On extension of cocycles to normalizer elements, outer conjugacy, and related problems
HTML articles powered by AMS MathViewer
- by Alexandre I. Danilenko and Valentin Ya. Golodets
- Trans. Amer. Math. Soc. 348 (1996), 4857-4882
- DOI: https://doi.org/10.1090/S0002-9947-96-01753-9
- PDF | Request permission
Abstract:
Let $T$ be an ergodic automorphism of a Lebesgue space and $\alpha$ a cocycle of $T$ with values in an Abelian locally compact group $G$. An automorphism $\theta$ from the normalizer $N[T]$ of the full group $[T]$ is said to be compatible with $\alpha$ if there is a measurable function $\varphi : X \to G$ such that $\alpha (\theta x, \theta T\theta ^{-1}) = - \varphi (x) + \alpha (x, T) + \varphi (Tx)$ at a.e. $x$. The topology on the set $D(T, \alpha )$ of all automorphisms compatible with $\alpha$ is introduced in such a way that $D(T , \alpha )$ becomes a Polish group. A complete system of invariants for the $\alpha$-outer conjugacy (i.e. the conjugacy in the quotient group $D(T, \alpha )/[T])$ is found. Structure of the cocycles compatible with every element of $N[T]$ is described.References
- S. I. Bezuglyĭ and V. Ya. Golodets, Groups of measure space transformations and invariants of outer conjugation for automorphisms from normalizers of type $\textrm {III}$ full groups, J. Funct. Anal. 60 (1985), no. 3, 341–369. MR 780502, DOI 10.1016/0022-1236(85)90044-8
- S. I. Bezuglyĭ and V. Ya. Golodets, Outer conjugacy of actions of countable amenable groups on a space with measure, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 643–660, 877 (Russian). MR 864169
- Sergey I. Bezuglyi and Valentin Ya. Golodets, Weak equivalence and the structures of cocycles of an ergodic automorphism, Publ. Res. Inst. Math. Sci. 27 (1991), no. 4, 577–625. MR 1140678, DOI 10.2977/prims/1195169421
- S. I. Bezuglyĭ, V. Ya. Golodets, and A. I. Danilenko, Extension of the $1$-cocycles of dynamical systems onto the elements of the normalizer, Dokl. Akad. Nauk Ukrain. SSR Ser. A 2 (1988), 3–5, 88 (Russian, with English summary). MR 938171
- Alain Connes and Wolfgang Krieger, Measure space automorphisms, the normalizers of their full groups, and approximate finiteness, J. Functional Analysis 24 (1977), no. 4, 336–352. MR 0444900, DOI 10.1016/0022-1236(77)90062-3
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- A. I. Danilenko, Ergodic dynamical systems, their cocycles, and automorphisms compatible with cocycles, Ph.D. thesis, Kharkov State University, 1991 (Russian).
- A. I. Danilenko, On cocycles compatible with normalizers of full groups of measure space transformations, Dopov./Dokl. Akad. Nauk Ukraïni 7 (1994), 14–17 (English, with Russian and Ukrainian summaries). MR 1320591
- —, The topological structure of Polish groups and groupoids of measure space transformations, Publ. RIMS Kyoto Univ. 31 (1995), 913–940.
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Jacob Feldman, Peter Hahn, and Calvin C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. in Math. 28 (1978), no. 3, 186–230. MR 492061, DOI 10.1016/0001-8708(78)90114-7
- J. Feldman, C. E. Sutherland, and R. J. Zimmer, Subrelations of ergodic equivalence relations, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 239–269. MR 1007409, DOI 10.1017/S0143385700004958
- V. Ya. Golodets, Description of representations of anticommutation relations, Russian Uspekhi Mat. Nauk 24 (1969), 3–64 (Russian); English transl. in. Russian Math. Surveys 24 (1969).
- V. Ya. Golodets and A. I. Danilenko, Ergodic actions of Abelian groups isomorphic to joint actions with themselves, Preprint 4-91, FTINT AN UkrSSR, Kharkov, 1991.
- Valentin Ya. Golodets and Sergey D. Sinelshchikov, Outer conjugacy for actions of continuous amenable groups, Publ. Res. Inst. Math. Sci. 23 (1987), no. 5, 737–769. MR 934670, DOI 10.2977/prims/1195176031
- V. Ya. Golodets and S. D. Sinel′shchikov, Classification and structure of cocycles of amenable ergodic equivalence relations, J. Funct. Anal. 121 (1994), no. 2, 455–485. MR 1272135, DOI 10.1006/jfan.1994.1056
- Toshihiro Hamachi, The normalizer group of an ergodic automorphism of type $\textrm {III}$ and the commutant of an ergodic flow, J. Functional Analysis 40 (1981), no. 3, 387–403. MR 611590, DOI 10.1016/0022-1236(81)90055-0
- Toshihiro Hamachi and Motosige Osikawa, Ergodic groups of automorphisms and Krieger’s theorems, Seminar on Mathematical Sciences, vol. 3, Keio University, Department of Mathematics, Yokohama, 1981. MR 617740
- A. A. Kirillov, Dynamical systems, factors and group representations, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 67–80 (Russian). MR 0217256
- Wolfgang Krieger, On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), no. 1, 19–70. MR 415341, DOI 10.1007/BF01360278
- George W. Mackey, Infinite dimensional group representations and their applications, Theory of group representations and Fourier analysis (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Montecatini Terme, 1970) Edizioni Cremonese, Rome, 1971, pp. 221–330. MR 0293015
- George W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187–207. MR 201562, DOI 10.1007/BF01361167
- Donald S. Ornstein, On the root problem in ergodic theory, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 347–356. MR 0399415
- Arlan Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971), 253–322 (1971). MR 281876, DOI 10.1016/0001-8708(71)90018-1
- Arlan Ramsay, Topologies on measured groupoids, J. Functional Analysis 47 (1982), no. 3, 314–343. MR 665021, DOI 10.1016/0022-1236(82)90110-0
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770, DOI 10.1070/RM1969v024n04ABEH001351
Bibliographic Information
- Alexandre I. Danilenko
- Affiliation: Department of Mechanics and Mathematics, Kharkov State University, Freedom Square 4, Kharkov, 310077, Ukraine
- MR Author ID: 265198
- Email: danilenko@ilt.kharkov.ua
- Valentin Ya. Golodets
- Affiliation: Mathematics Department, Institute for Low Temperature Physics, Lenin Avenue 47, Kharkov, 310164, Ukraine
- Email: golodets@ilt.kharkov.ua
- Received by editor(s): January 4, 1995
- Additional Notes: The work was supported in part by the International Science Foundation Grant No U2B000.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4857-4882
- MSC (1991): Primary 46L55; Secondary 28D15, 28D99
- DOI: https://doi.org/10.1090/S0002-9947-96-01753-9
- MathSciNet review: 1376544