Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces
HTML articles powered by AMS MathViewer
- by M. Lemańczyk, F. Parreau and D. Volný
- Trans. Amer. Math. Soc. 348 (1996), 4919-4938
- DOI: https://doi.org/10.1090/S0002-9947-96-01799-0
- PDF | Request permission
Abstract:
Given an irrational rotation, in the space of real bounded variation functions it is proved that there are ergodic cocycles whose small perturbations remain ergodic; in fact, the set of ergodic cocycles has nonempty dense interior. Given a pseudo-homogeneous Banach space and an irrational rotation, we study the set of elements satisfying the mean ergodic theorem. Once such a space is not homogeneous, we prove it is not reflexive and not separable. In “natural" cases, up to $L^1$-cohomology, the only elements satisfying the mean ergodic theorem are those from the closure of trigonometric polynomials. For pseudo-homogeneous spaces admitting a Koksma’s inequality ergodicity of the corresponding cylinder flows can be deduced from spectral properties of some circle extensions. In particular this is the case of Lebesgue spectrum (in the orthocomplement of the space of eigenfunctions) for the circle extension.References
- J. Aaronson, M. Lemańczyk, Ch. Mauduit, H. Nakada, Koksma’s inequality and group extensions of Kronecker transformations, Algorithms, Fractals, and Dynamics, Plenum Press, 1995, 27–50.
- J. Aaronson, M. Lemańczyk, D. Volný, A salad of cocycles, preprint.
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- P. Gabriel, M. Lemańczyk, K. Schmidt, Extensions of cocycles for hyperfinite actions, and applications, to appear in Monatshefte Math.
- Henry Helson, Cocycles on the circle, J. Operator Theory 16 (1986), no. 1, 189–199. MR 847339
- Michael-Robert Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233 (French). MR 538680, DOI 10.1007/BF02684798
- A. Iwanik, M. Lemańczyk, and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), no. 1-2, 73–95. MR 1239717, DOI 10.1007/BF02764637
- A.B. Katok, Constructions in Ergodic Theory , unpublished lecture notes.
- Yitzhak Katznelson, An introduction to harmonic analysis, Second corrected edition, Dover Publications, Inc., New York, 1976. MR 0422992
- A. V. Kočergin, The homology of functions over dynamical systems, Dokl. Akad. Nauk SSSR 231 (1976), no. 4, 795–798 (Russian). MR 0430211
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Jan Kwiatkowski, Factors of ergodic group extensions of rotations, Studia Math. 103 (1992), no. 2, 123–131. MR 1199321, DOI 10.4064/sm-103-2-123-131
- Mariusz Lemańczyk and Christian Mauduit, Ergodicity of a class of cocycles over irrational rotations, J. London Math. Soc. (2) 49 (1994), no. 1, 124–132. MR 1253017, DOI 10.1112/jlms/49.1.124
- P. Liardet, D. Volný, Sums of continuous and differentiable functions in dynamical systems, preprint.
- Michael Lin and Robert Sine, Ergodic theory and the functional equation $(I-T)x=y$, J. Operator Theory 10 (1983), no. 1, 153–166. MR 715565
- Calvin C. Moore and Klaus Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Proc. London Math. Soc. (3) 40 (1980), no. 3, 443–475. MR 572015, DOI 10.1112/plms/s3-40.3.443
- Mahesh G. Nerurkar, On the construction of smooth ergodic skew-products, Ergodic Theory Dynam. Systems 8 (1988), no. 2, 311–326. MR 951272, DOI 10.1017/S0143385700004454
- Ishai Oren, Ergodicity of cylinder flows arising from irregularities of distribution, Israel J. Math. 44 (1983), no. 2, 127–138. MR 693356, DOI 10.1007/BF02760616
- D. A. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), no. 1, 65–74. MR 1046174, DOI 10.1007/BF02764730
- D. A. Pask, Ergodicity of certain cylinder flows, Israel J. Math. 76 (1991), no. 1-2, 129–152. MR 1177336, DOI 10.1007/BF02782848
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR 833286, DOI 10.1017/CBO9780511608728
- Marek Ryszard Rychlik, The Wiener lemma and cocycles, Proc. Amer. Math. Soc. 104 (1988), no. 3, 932–933. MR 964876, DOI 10.1090/S0002-9939-1988-0964876-6
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- Michel Talagrand, Some functions with a unique invariant mean, Proc. Amer. Math. Soc. 82 (1981), no. 2, 253–256. MR 609661, DOI 10.1090/S0002-9939-1981-0609661-3
- William A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem $\textrm {mod}\ 2$, Trans. Amer. Math. Soc. 140 (1969), 1–33. MR 240056, DOI 10.1090/S0002-9947-1969-0240056-X
- D. Volný, Cohomology of Lipschitz and absolutely continuous functions for the circle rotation, preprint.
Bibliographic Information
- M. Lemańczyk
- Affiliation: Department of Mathematics and Computer Science, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
- MR Author ID: 112360
- Email: mlem@mat.uni.torun.pl
- F. Parreau
- Affiliation: Laboratoire d’Analyse, Géométrie et Applications, URA CNRS 742, Université Paris-Nord, Av. J.-B. Clément, 93430 Villetaneuse, France
- Email: parreau@math.univ-paris13.fr
- D. Volný
- Affiliation: Mathematical Institute, Charles University, Sokolovská 83, 186 00 Praha 8, Czech Republic
- Email: dvolny@karlin.mff.cuni.cz
- Received by editor(s): July 3, 1995
- Additional Notes: Research of the first author was partially supported by KBN grant 2 P301 031 07 (1994)
Research of the third author was supported by grant GAUK 368 of Charles University - © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4919-4938
- MSC (1991): Primary 28D05, 47A10
- DOI: https://doi.org/10.1090/S0002-9947-96-01799-0
- MathSciNet review: 1389783