Boundedness of the fractional integral on
weighted Lebesgue and Lipschitz spaces
Authors:
Eleonor Harboure, Oscar Salinas and Beatriz Viviani
Journal:
Trans. Amer. Math. Soc. 349 (1997), 235-255
MSC (1991):
Primary 42B25
DOI:
https://doi.org/10.1090/S0002-9947-97-01644-9
MathSciNet review:
1357395
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Necessary and sufficient conditions are given for the fractional integral operator to be bounded from weighted strong and weak
spaces within the range
into suitable weighted
and Lipschitz spaces. We also characterize the weights for which
can be extended to a bounded operator from weighted
into a weighted Lipschitz space of order
. Finally, under an additional assumption on the weight, we obtain necessary and sufficient conditions for the boundedness of
between weighted Lipschitz spaces.
- [F-M] Morton E. Harris, Finite groups with Sylow 2-subgroups of type 𝑃𝑆𝑝(6,𝑞),𝑞 odd, Comm. Algebra 2 (1974), 181–232. MR 409647, https://doi.org/10.1080/00927877408822010
- [G] F. W. Gehring, The 𝐿^{𝑝}-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, https://doi.org/10.1007/BF02392268
- [GC] José García-Cuerva, Weighted 𝐻^{𝑝} spaces, Dissertationes Math. (Rozprawy Mat.) 162 (1979), 63. MR 549091
- [G-V] A. Eduardo Gatto and Stephen Vági, Fractional integrals on spaces of homogeneous type, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 171–216. MR 1044788
- [H-M-W] Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, https://doi.org/10.1090/S0002-9947-1973-0312139-8
- [H-S-V] Eleonor Harboure, Oscar Salinas, and Beatriz Viviani, Boundedness of the fractional integral in Orlicz and 𝜙-bounded mean oscillation spaces, Proceedings of the Second “Dr. António A. R. Monteiro” Congress on Mathematics (Spanish) (Bahía Blanca, 1993) Univ. Nac. del Sur, Bahía Blanca, 1993, pp. 41–50 (Spanish). MR 1253076
- [M] Benjamin Muckenhoupt, Weighted norm inequalities for classical operators, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 69–83. MR 545240
- [M-W1] Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, https://doi.org/10.1090/S0002-9947-1974-0340523-6
- [M-W2] Benjamin Muckenhoupt and Richard L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1975/76), no. 3, 221–237. MR 399741, https://doi.org/10.4064/sm-54-3-221-237
- [P] Jaak Peetre, On the theory of \cal𝐿_{𝑝},_{𝜆} spaces, J. Functional Analysis 4 (1969), 71–87. MR 0241965, https://doi.org/10.1016/0022-1236(69)90022-6
- [S-Z] E. M. Stein and A. Zygmund, Boundedness of translation invariant operators on Hölder spaces and 𝐿^{𝑝}-spaces, Ann. of Math. (2) 85 (1967), 337–349. MR 215121, https://doi.org/10.2307/1970445
- [Z] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 42B25
Retrieve articles in all journals with MSC (1991): 42B25
Additional Information
Eleonor Harboure
Affiliation:
Programa Especial de Matemática Aplicada and Facultad de Ingenier ía Qu í mica, Universidad Nacional del Litoral, Güemes 3450, 3000 Santa Fe, Rep. Argentina
Oscar Salinas
Affiliation:
Programa Especial de Matemática Aplicada and Facultad de Ingenier ía Qu í mica, Universidad Nacional del Litoral, Güemes 3450, 3000 Santa Fe, Rep. Argentina
Beatriz Viviani
Affiliation:
Programa Especial de Matemática Aplicada and Facultad de Ingenier ía Qu í mica, Universidad Nacional del Litoral, Güemes 3450, 3000 Santa Fe, Rep. Argentina
DOI:
https://doi.org/10.1090/S0002-9947-97-01644-9
Keywords:
Fractional integral,
weighted Lebesgue and Lipschitz spaces,
weighted BMO
Received by editor(s):
June 26, 1995
Additional Notes:
The authors were supported by the Consejo Nacional de Investigaciones Cient íficas y Técnicas de la República Argentina and by the Universidad Nacional del Litoral, CAI+D Program.
Article copyright:
© Copyright 1997
American Mathematical Society