Automorphism Groups and Invariant Subspace Lattices
HTML articles powered by AMS MathViewer
- by Paul S. Muhly and Baruch Solel
- Trans. Amer. Math. Soc. 349 (1997), 311-330
- DOI: https://doi.org/10.1090/S0002-9947-97-01755-8
- PDF | Request permission
Abstract:
Let $(B,\mathbf {R},\alpha )$ be a $C^{*}$- dynamical system and let $A=B^\alpha ([0,\infty ))$ be the analytic subalgebra of $B$. We extend the work of Loebl and the first author that relates the invariant subspace structure of $\pi (A),$ for a $C^{*}$-representation $\pi$ on a Hilbert space $\mathcal {H}_\pi$, to the possibility of implementing $\alpha$ on $\mathcal {H}_\pi .$ We show that if $\pi$ is irreducible and if lat $\pi (A)$ is trivial, then $\pi (A)$ is ultraweakly dense in $\mathcal {L(H}_\pi ).$ We show, too, that if $A$ satisfies what we call the strong Dirichlet condition, then the ultraweak closure of $\pi (A)$ is a nest algebra for each irreducible representation $\pi .$ Our methods give a new proof of a “density” theorem of Kaftal, Larson, and Weiss and they sharpen earlier results of ours on the representation theory of certain subalgebras of groupoid $C^{*}$-algebras.References
- William B. Arveson, Operator algebras and measure preserving automorphisms, Acta Math. 118 (1967), 95–109. MR 210866, DOI 10.1007/BF02392478
- William B. Arveson, A density theorem for operator algebras, Duke Math. J. 34 (1967), 635–647. MR 221293
- William Arveson, On groups of automorphisms of operator algebras, J. Functional Analysis 15 (1974), 217–243. MR 0348518, DOI 10.1016/0022-1236(74)90034-2
- William Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433–532. MR 365167, DOI 10.2307/1970956
- William B. Arveson and Keith B. Josephson, Operator algebras and measure preserving automorphisms. II, J. Functional Analysis 4 (1969), 100–134. MR 0250081, DOI 10.1016/0022-1236(69)90025-1
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum statistical mechanics. Vol. 1, Texts and Monographs in Physics, Springer-Verlag, New York-Heidelberg, 1979. $C^{\ast }$- and $W^{\ast }$-algebras, algebras, symmetry groups, decomposition of states. MR 545651, DOI 10.1007/978-3-662-02313-6
- Dang Ngoc Nghiem, Sur la classification des systèmes dynamiques non commutatifs, J. Functional Analysis 15 (1974), 188–201 (French, with English summary). MR 0348509, DOI 10.1016/0022-1236(74)90018-4
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée. MR 0352996
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Alain Guichardet, Systèmes dynamiques non commutatifs, Astérisque, Nos. 13-14, Société Mathématique de France, Paris, 1974 (French). With an English summary; Séminaire rédigé par A. Guichardet d’après des exposés faits au Séminaire Dang Ngoc—Guichardet 1972-1973 par C. Cahmbon, F. Combes, N. Dang Ngoc, M. Enock, A. Guichardet, F. Ledrappier, J. C. Marcuard, O. Maréchal, M. Samuélidès, J. L. Sauvageot, J. M. Schwartz, J. P. Thouvenot. MR 0352997
- Uffe Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), no. 2, 271–283. MR 407615, DOI 10.7146/math.scand.a-11606
- Herbert Halpern, Unitary implementation of automorphism groups on von Neumann algebras, Comm. Math. Phys. 25 (1972), 253–275. MR 296709, DOI 10.1007/BF01877685
- Palle E. T. Jørgensen, Ergodic properties of one-parameter automorphism groups of operator algebras, J. Math. Anal. Appl. 87 (1982), no. 2, 354–372. MR 658019, DOI 10.1016/0022-247X(82)90129-9
- Richard V. Kadison and I. M. Singer, Triangular operator algebras. Fundamentals and hyperreducible theory, Amer. J. Math. 82 (1960), 227–259. MR 121675, DOI 10.2307/2372733
- V. Kaftal, D. Larson, and G. Weiss, Quasitriangular subalgebras of semifinite von Neumann algebras are closed, J. Funct. Anal. 107 (1992), no. 2, 387–401. MR 1172032, DOI 10.1016/0022-1236(92)90115-Y
- Alexander Kumjian, On $C^\ast$-diagonals, Canad. J. Math. 38 (1986), no. 4, 969–1008. MR 854149, DOI 10.4153/CJM-1986-048-0
- Richard I. Loebl and Paul S. Muhly, Analyticity and flows in von Neumann algebras, J. Functional Analysis 29 (1978), no. 2, 214–252. MR 504460, DOI 10.1016/0022-1236(78)90007-1
- Paul S. Muhly, Radicals, crossed products, and flows, Ann. Polon. Math. 43 (1983), no. 1, 35–42. MR 727885, DOI 10.4064/ap-43-1-35-42
- Paul S. Muhly, Chao Xin Qiu, and Baruch Solel, Coordinates, nuclearity and spectral subspaces in operator algebras, J. Operator Theory 26 (1991), no. 2, 313–332. MR 1225519
- Paul S. Muhly, Chao Xin Qiu, and Jingbo Xia, Analyticity, uniform averaging and $K$-theory, Algebraic methods in operator theory, Birkhäuser Boston, Boston, MA, 1994, pp. 328–349. MR 1284958, DOI 10.1007/978-1-4612-0255-4_{3}2
- P. S. Muhly and B. Solel, Representations of triangular subalgebras of groupoid $C^{*}$-algebras, to appear in J. Australian Math. Soc.
- John L. Orr and Justin R. Peters, Some representations of TAF algebras, Pacific J. Math. 167 (1995), no. 1, 129–161. MR 1318167, DOI 10.2140/pjm.1995.167.129
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266, DOI 10.1007/BFb0091072
- Jean Renault, Représentation des produits croisés d’algèbres de groupoïdes, J. Operator Theory 18 (1987), no. 1, 67–97 (French). MR 912813
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- László Zsidó, Spectral and ergodic properties of the analytic generators, J. Approximation Theory 20 (1977), no. 1, 77–138. MR 463974, DOI 10.1016/0021-9045(77)90021-1
Bibliographic Information
- Paul S. Muhly
- Affiliation: Department of Mathematics The University of Iowa Iowa City, Iowa 52242
- Email: muhly@math.uiowa.edu
- Baruch Solel
- Affiliation: Department of Mathematics Technion - Israel Institute of Technology Haifa 32000 Israel
- Email: mabaruch@techunix.technion.ac.il
- Received by editor(s): July 11, 1994
- Received by editor(s) in revised form: October 8, 1995
- Additional Notes: Supported in part by grants from the U. S. National Science Foundation and the U. S. - Israel Binational Science Foundation.
Supported in part by the U. S. - Israel Binational Science Foundation and the Fund for the Promotion of Research at the Technion. - © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 311-330
- MSC (1991): Primary 46K50, 47D25, 47D99, 46L40; Secondary 46L50, 46L55, 46L99
- DOI: https://doi.org/10.1090/S0002-9947-97-01755-8
- MathSciNet review: 1376551