Shadowing orbits of ordinary differential equations on invariant submanifolds
Author:
Brian A. Coomes
Journal:
Trans. Amer. Math. Soc. 349 (1997), 203-216
MSC (1991):
Primary 34A50; Secondary 65L70
DOI:
https://doi.org/10.1090/S0002-9947-97-01783-2
MathSciNet review:
1390974
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A finite time shadowing theorem for autonomous ordinary differential equations is presented. Under consideration is the case were there exists a twice continuously differentiable function mapping phase space into
with the property that for a particular regular value
of
the submanifold
is invariant under the flow. The main theorem gives a condition which implies that an approximate solution lying close to
is uniformly close to a true solution lying in
. Applications of this theorem to computer generated approximate orbits are discussed.
- 1. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York, 1975, Reprinted by Dover, New York, 1987.
- 2. D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
- 3. Rufus Bowen, 𝜔-limit sets for axiom 𝐴 diffeomorphisms, J. Differential Equations 18 (1975), no. 2, 333–339. MR 413181, https://doi.org/10.1016/0022-0396(75)90065-0
- 4. Shui-Nee Chow and Kenneth J. Palmer, On the numerical computation of orbits of dynamical systems: the one-dimensional case, J. Dynam. Differential Equations 3 (1991), no. 3, 361–379. MR 1118339, https://doi.org/10.1007/BF01049737
- 5. Shui-Nee Chow and Kenneth J. Palmer, On the numerical computation of orbits of dynamical systems: the higher-dimensional case, J. Complexity 8 (1992), no. 4, 398–423. MR 1195260, https://doi.org/10.1016/0885-064X(92)90004-U
- 6. Shui-Nee Chow and Erik S. Van Vleck, A shadowing lemma approach to global error analysis for initial value ODEs, SIAM J. Sci. Comput. 15 (1994), no. 4, 959–976. MR 1278010, https://doi.org/10.1137/0915058
- 7. Brian A. Coomes, Hüseyin Koçak, and Kenneth J. Palmer, Shadowing orbits of ordinary differential equations, J. Comput. Appl. Math. 52 (1994), no. 1-3, 35–43. Oscillations in nonlinear systems: applications and numerical aspects. MR 1310121, https://doi.org/10.1016/0377-0427(94)90347-6
- 8. Brian A. Coomes, Hüseyin Koçak, and Kenneth J. Palmer, Periodic shadowing, Chaotic numerics (Geelong, 1993) Contemp. Math., vol. 172, Amer. Math. Soc., Providence, RI, 1994, pp. 115–130. MR 1294411, https://doi.org/10.1090/conm/172/01801
- 9. Brian A. Coomes, Hüseyin Koçak, and Kenneth J. Palmer, A shadowing theorem for ordinary differential equations, Z. Angew. Math. Phys. 46 (1995), no. 1, 85–106. MR 1315738, https://doi.org/10.1007/BF00952258
- 10. Brian A. Coomes, Hüseyin Koçak, and Kenneth J. Palmer, Rigorous computational shadowing of orbits of ordinary differential equations, Numer. Math. 69 (1995), no. 4, 401–421. MR 1314595, https://doi.org/10.1007/s002110050100
- 11. -, Shadowing in discrete dynamical systems, Six Lectures on Dynamical Systems, World Scientific, Singapore, 1996, pp. 163-212.
- 12. S. Dawson, C. Grebogi, T. Sauer, and J. A. Yorke, Obstructions to shadowing when a Lyapunov exponent fluctuates about zero, Phys. Rev. Lett. 73 (1994), 1927-1930.
- 13. John E. Franke and James F. Selgrade, Hyperbolicity and chain recurrence, J. Differential Equations 26 (1977), no. 1, 27–36. MR 467834, https://doi.org/10.1016/0022-0396(77)90096-1
- 14. Enrique A. González Velasco, Generic properties of polynomial vector fields at infinity, Trans. Amer. Math. Soc. 143 (1969), 201–222. MR 252788, https://doi.org/10.1090/S0002-9947-1969-0252788-8
- 15. Stephen M. Hammel, James A. Yorke, and Celso Grebogi, Do numerical orbits of chaotic dynamical processes represent true orbits?, J. Complexity 3 (1987), no. 2, 136–145. MR 907194, https://doi.org/10.1016/0885-064X(87)90024-0
- 16. Stephen M. Hammel, James A. Yorke, and Celso Grebogi, Numerical orbits of chaotic processes represent true orbits, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 465–469. MR 938160, https://doi.org/10.1090/S0273-0979-1988-15701-1
- 17. A. Nath and D. S. Ray, Horseshoe-shaped maps in chaotic dynamics of atom-field interaction, Phys. Rev. A 36 (1987), 431-434.
- 18. H. Poincaré, Mémoire sur les courbes définies par une equation différentielle, J. Mathématiques (3) 7 (1881), 375-422.
- 19. Tim Sauer and James A. Yorke, Rigorous verification of trajectories for the computer simulation of dynamical systems, Nonlinearity 4 (1991), no. 3, 961–979. MR 1124343
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34A50, 65L70
Retrieve articles in all journals with MSC (1991): 34A50, 65L70
Additional Information
Brian A. Coomes
Affiliation:
Department of Mathematics and Computer Science, University of Miami, Coral Gables, Florida 33124
Email:
coomes@math.miami.edu
DOI:
https://doi.org/10.1090/S0002-9947-97-01783-2
Keywords:
Ordinary differential equations,
shadowing,
Hamiltonian systems,
first integrals,
invariant manifolds
Received by editor(s):
May 17, 1995
Article copyright:
© Copyright 1997
American Mathematical Society