Bifurcation problems for the -Laplacian in
Authors:
Pavel Drábek and Yin Xi Huang
Journal:
Trans. Amer. Math. Soc. 349 (1997), 171-188
MSC (1991):
Primary 35B32, 35J70, 35P30
DOI:
https://doi.org/10.1090/S0002-9947-97-01788-1
MathSciNet review:
1390979
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we consider the bifurcation problem
in with
. We show that a continuum of positive solutions bifurcates out from the principal eigenvalue
of the problem
Here both functions and
may change sign.
- [AD] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
- [AH]
W. Allegretto and Y.X. Huang, Eigenvalues of the indefinite weight
-Laplacian in weighted
spaces, Funkc. Ekvac. 38 (1995), 233-242.
- [A] Aomar Anane, Simplicité et isolation de la première valeur propre du 𝑝-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728 (French, with English summary). MR 920052
- [BH] P. A. Binding and Y. X. Huang, Bifurcation from eigencurves of the 𝑝-Laplacian, Differential Integral Equations 8 (1995), no. 2, 415–428. MR 1296133
- [BP] F. E. Browder and W. V. Petryshyn, Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Functional Analysis 3 (1969), 217–245. MR 0244812, https://doi.org/10.1016/0022-1236(69)90041-x
- [DA] E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1973/74), 1069–1076. MR 348567, https://doi.org/10.1512/iumj.1974.23.23087
- [DM] Manuel A. del Pino and Raúl F. Manásevich, Global bifurcation from the eigenvalues of the 𝑝-Laplacian, J. Differential Equations 92 (1991), no. 2, 226–251. MR 1120904, https://doi.org/10.1016/0022-0396(91)90048-E
- [D1] Pavel Drábek, On the global bifurcation for a class of degenerate equations, Ann. Mat. Pura Appl. (4) 159 (1991), 1–16. MR 1145086, https://doi.org/10.1007/BF01766290
- [D2] P. Drábek, Solvability and bifurcations of nonlinear equations, Pitman Research Notes in Mathematics Series, vol. 264, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. MR 1175397
- [D3] Pavel Drábek, Nonlinear eigenvalue problem for 𝑝-Laplacian in 𝐑^{𝐍}, Math. Nachr. 173 (1995), 131–139. MR 1336957, https://doi.org/10.1002/mana.19951730109
- [ER] Allan L. Edelson and Adolfo J. Rumbos, Linear and semilinear eigenvalue problems in 𝑅ⁿ, Comm. Partial Differential Equations 18 (1993), no. 1-2, 215–240. MR 1211732, https://doi.org/10.1080/03605309308820928
- [FK] Svatopluk Fučík and Alois Kufner, Nonlinear differential equations, Studies in Applied Mechanics, vol. 2, Elsevier Scientific Publishing Co., Amsterdam-New York, 1980. MR 558764
- [HS] Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. MR 0367121
- [KA1] Yoshitsugu Kabeya, Existence theorems for quasilinear elliptic problems on 𝐑ⁿ, Funkcial. Ekvac. 35 (1992), no. 3, 603–616. MR 1199478
- [KA2] Yoshitsugu Kabeya, On some quasilinear elliptic problems involving critical Sobolev exponents, Funkcial. Ekvac. 36 (1993), no. 2, 385–404. MR 1245346
- [KU]
I.A. Kuzin, On multiple solvability of some elliptic problems in
, Soviet Math. Dokl. 44 (1992), 700-704.
- [LY] Gong Bao Li and Shu Sen Yan, Eigenvalue problems for quasilinear elliptic equations on 𝑅^{𝑁}, Comm. Partial Differential Equations 14 (1989), no. 8-9, 1291–1314. MR 1017074, https://doi.org/10.1080/03605308908820654
- [LQ] Peter Lindqvist, On the equation 𝑑𝑖𝑣(|∇𝑢|^{𝑝-2}∇𝑢)+𝜆|𝑢|^{𝑝-2}𝑢=0, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR 1007505, https://doi.org/10.1090/S0002-9939-1990-1007505-7
- [R] Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, https://doi.org/10.1016/0022-1236(71)90030-9
- [RE] Adolfo J. Rumbos and Allan L. Edelson, Bifurcation properties of semilinear elliptic equations in 𝑅ⁿ, Differential Integral Equations 7 (1994), no. 2, 399–410. MR 1255896
- [SC] Ian Schindler, Quasilinear elliptic boundary value problems on unbounded cylinders and a related mountain-pass lemma, Arch. Rational Mech. Anal. 120 (1992), no. 4, 363–374. MR 1185567, https://doi.org/10.1007/BF00380321
- [SE] N. A. Davydov, A sufficient condition for the summability of a series by the (𝜑_{𝑛})-method, Uspehi Mat. Nauk 19 (1964), no. 5 (119), 115–118 (Russian). MR 0173112
- [SK]
I.
V. Skrypnik and I.
V. Skrypnik, Nelineĭ nye èllipticheskie uravneniya
vysshego poryadka, Izdat. “Naukova Dumka”, Kiev, 1973
(Russian). MR
0435590
Igor Vladimirovič Skrypnik, Nonlinear elliptic boundary value problems, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 91, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1986. With German, French and Russian summaries. MR 915342 - [TO] Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, https://doi.org/10.1016/0022-0396(84)90105-0
- [TR] Neil S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. MR 226198, https://doi.org/10.1002/cpa.3160200406
- [Y] Lao Sen Yu, Nonlinear 𝑝-Laplacian problems on unbounded domains, Proc. Amer. Math. Soc. 115 (1992), no. 4, 1037–1045. MR 1162957, https://doi.org/10.1090/S0002-9939-1992-1162957-9
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35B32, 35J70, 35P30
Retrieve articles in all journals with MSC (1991): 35B32, 35J70, 35P30
Additional Information
Pavel Drábek
Affiliation:
Department of Mathematics, University of West Bohemia, P.O. Box 314, 30614 Pilsen, Czech Republic
Yin Xi Huang
Affiliation:
Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152
Email:
huangy@mathsci.msci.memphis.edu
DOI:
https://doi.org/10.1090/S0002-9947-97-01788-1
Keywords:
$p$-Laplacian,
global positive solutions,
weighted spaces
Received by editor(s):
November 18, 1994
Received by editor(s) in revised form:
March 10, 1995
Additional Notes:
The first author was partially supported by the Grant Agency of the Czech Republic under the Grant No. 201/94/0008
Article copyright:
© Copyright 1997
American Mathematical Society