Integration of Correspondences on Loeb Spaces
Author:
Yeneng Sun
Journal:
Trans. Amer. Math. Soc. 349 (1997), 129-153
MSC (1991):
Primary 03H05, 28B20; Secondary 46G10, 90A14
DOI:
https://doi.org/10.1090/S0002-9947-97-01825-4
MathSciNet review:
1401529
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the Bochner and Gelfand integration of Banach space valued correspondences on a general Loeb space. Though it is well known that the Lyapunov type result on the compactness and convexity of the integral of a correspondence and the Fatou type result on the preservation of upper semicontinuity by integration are in general not valid in the setting of an infinite dimensional space, we show that exact versions of these two results hold in the case we study. We also note that our results on a hyperfinite Loeb space capture the nature of the corresponding asymptotic results for the large finite case; but the unit Lebesgue interval fails to provide such a framework.
- 1. Sergio Albeverio, Raphael Høegh-Krohn, Jens Erik Fenstad, and Tom Lindstrøm, Nonstandard methods in stochastic analysis and mathematical physics, Pure and Applied Mathematics, vol. 122, Academic Press, Inc., Orlando, FL, 1986. MR 859372
- 2. Robert M. Anderson, Star-finite representations of measure spaces, Trans. Amer. Math. Soc. 271 (1982), no. 2, 667–687. MR 654856, https://doi.org/10.1090/S0002-9947-1982-0654856-1
- 3. Zvi Artstein, Distributions of random sets and random selections, Israel J. Math. 46 (1983), no. 4, 313–324. MR 730347, https://doi.org/10.1007/BF02762891
- 4. Jean-Pierre Aubin and Hélène Frankowska, Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1048347
- 5. Robert J. Aumann, Markets with a continuum of traders, Econometrica 32 (1964), 39–50. MR 172689, https://doi.org/10.2307/1913732
- 6. Robert J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 185073, https://doi.org/10.1016/0022-247X(65)90049-1
- 7. Erik J. Balder, Fatou’s lemma in infinite dimensions, J. Math. Anal. Appl. 136 (1988), no. 2, 450–465. MR 972148, https://doi.org/10.1016/0022-247X(88)90096-0
- 8. C. Berge, Topological Spaces, Oliver & Boyd, London, 1959. MR 21:4401 (French ed.)
- 9. Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- 10. Charles L. Byrne, Remarks on the set-valued integrals of Debreu and Aumann, J. Math. Anal. Appl. 62 (1978), no. 2, 243–246. MR 485918, https://doi.org/10.1016/0022-247X(78)90123-3
- 11. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
- 12. Gerard Debreu, Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 351–372. MR 0228252
- 13. J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- 14. Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523
- 15. Ky Fan, Fixed-point and minimax theorems in locally convex linear spaces, Proceedings of the National Academy of Sciences of the USA 38 (1952), 121-126. MR 13:858d
- 16. I. Glicksberg, A further generalization of Kakutani's fixed point theorem with application to Nash equilibrium points, Proceedings of the American Mathematical Society 3 (1952), 170-174. MR 13:764g
- 17. Sergiu Hart, Werner Hildenbrand, and Elon Kohlberg, On equilibrium allocations as distributions on the commodity space, J. Math. Econom. 1 (1974), no. 2, 159–166. MR 436929, https://doi.org/10.1016/0304-4068(74)90006-8
- 18. Sergiu Hart and Elon Kohlberg, Equally distributed correspondences, J. Math. Econom. 1 (1974), no. 2, 167–174. MR 422553, https://doi.org/10.1016/0304-4068(74)90007-X
- 19. Fumio Hiai and Hisaharu Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), no. 1, 149–182. MR 507504, https://doi.org/10.1016/0047-259X(77)90037-9
- 20. Werner Hildenbrand, Core and equilibria of a large economy, Princeton University Press, Princeton, N.J., 1974. With an appendix to Chapter 2 by K. Hildenbrand; Princeton Studies in Mathematical Economics, No. 5. MR 0389160
- 21. Bhu Dev Sharma and Ram Autar, Information-improvement functions, Econometrica 42 (1974), 103–112. MR 406699, https://doi.org/10.2307/1913688
- 22. Albert E. Hurd and Peter A. Loeb, An introduction to nonstandard real analysis, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR 806135
- 23. Robert C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129–140. MR 165344, https://doi.org/10.1090/S0002-9947-1964-0165344-2
- 24. Robert C. James, A counterexample for a 𝑠𝑢𝑝 theorem in normed spaces, Israel J. Math. 9 (1971), 511–512. MR 279565, https://doi.org/10.1007/BF02771466
- 25. M. Ali Khan, On the integration of set-valued mappings in a nonreflexive Banach space. II, Simon Stevin 59 (1985), no. 3, 257–267. MR 833482
- 26. M. Ali Khan and Mukul Majumdar, Weak sequential convergence in 𝐿₁(𝜇,𝑋) and an approximate version of Fatou’s lemma, J. Math. Anal. Appl. 114 (1986), no. 2, 569–573. MR 833611, https://doi.org/10.1016/0022-247X(86)90108-3
- 27. M. A. Khan and Y. N. Sun, Non-cooperative games on hyperfinite Loeb spaces, submitted.
- 28. M. A. Khan and Y. N. Sun, General equilibrium theory with a Loeb space of agents, presented at the Workshop on Geometry, Topology and Markets at the Fields Institute for Research in Mathematical Sciences in July 1994.
- 29. Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692
- 30. Gregory Knowles, Lyapunov vector measures, SIAM J. Control 13 (1975), 294–303. MR 0388216
- 31. Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, https://doi.org/10.1090/S0002-9947-1975-0390154-8
- 32. C. Olech, Existence theory in optimal control, Control theory and topics in functional analysis (Internat. Sem., Internat. Centre Theoret. Phys., Trieste, 1974) Internat. Atomic Energy Agency, Vienna, 1976, pp. 291–328. MR 0513247
- 33. Horst Osswald and Yeneng Sun, On the extensions of vector-valued Loeb measures, Proc. Amer. Math. Soc. 111 (1991), no. 3, 663–675. MR 1047007, https://doi.org/10.1090/S0002-9939-1991-1047007-6
- 34. K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- 35. Patrizia Pucci and Giuseppe Vitillaro, A representation theorem for Aumann integrals, J. Math. Anal. Appl. 102 (1984), no. 1, 86–101. MR 751344, https://doi.org/10.1016/0022-247X(84)90204-X
- 36. Salim Rashid, Economies with many agents, Johns Hopkins University Press, Baltimore, MD, 1987. An approach using nonstandard analysis. MR 871874
- 37. Hans Richter, Verallgemeinerung eines in der Statistik benötigten Satzes der Masstheorie, Math. Ann. 150 (1963), 85–90 (German). MR 146329, https://doi.org/10.1007/BF01396583
- 38. Aldo Rustichini, A counterexample and an exact version of Fatou’s lemma in infinite-dimensional spaces, Arch. Math. (Basel) 52 (1989), no. 4, 357–362. MR 998411, https://doi.org/10.1007/BF01194410
- 39. A. Rustichini and N. Yannelis, What is perfection competition?, Equilibrium Theory in Infinite Dimensional Spaces (M. A. Khan and N. C. Yannelis, eds.), Springer-Verlag, Berlin, 1991.
- 40. David Schmeidler, Fatou’s lemma in several dimensions, Proc. Amer. Math. Soc. 24 (1970), 300–306. MR 248316, https://doi.org/10.1090/S0002-9939-1970-0248316-7
- 41. Y. N. Sun, Nonstandard theory of vector measures, Ph.D. dissertation, University of Illinois, Urbana, Illinois, 1989.
- 42. Yeneng Sun, On the theory of vector valued Loeb measures and integration, J. Funct. Anal. 104 (1992), no. 2, 327–362. MR 1153991, https://doi.org/10.1016/0022-1236(92)90004-3
- 43. -, Distributional properties of correspondences on Loeb spaces, Journal of Functional Analysis 139 (1996), 68-93. CMP 96:15
- 44. Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, https://doi.org/10.1137/0315056
- 45. Nicholas C. Yannelis, On the upper and lower semicontinuity of the Aumann integral, J. Math. Econom. 19 (1990), no. 4, 373–389. MR 1062809, https://doi.org/10.1016/0304-4068(90)90028-8
- 46. -, Integration of Banach-valued correspondences, Equilibrium Theory in Infinite Dimensional Spaces (M. A. Khan and N. C. Yannelis, eds.), Springer-Verlag, Berlin, 1991.
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 03H05, 28B20, 46G10, 90A14
Retrieve articles in all journals with MSC (1991): 03H05, 28B20, 46G10, 90A14
Additional Information
Yeneng Sun
Affiliation:
Department of Mathematics, National University of Singapore, Singapore 119260
Address at time of publication:
Cowles Foundation, Yale University, New Haven, Connecticut 06520
Email:
gs53@econ.yale.edu
DOI:
https://doi.org/10.1090/S0002-9947-97-01825-4
Keywords:
Correspondences,
Loeb spaces,
Bochner integral,
Gel$^{\prime }$fand integral,
convexity,
semicontinuity,
weak compactness,
weak$^{*}$ compactness
Received by editor(s):
February 23, 1995
Additional Notes:
The main results were presented at the Fifth Asian Logic Conference held in Singapore in June 1993. The author is grateful to Professors Robert Anderson, Donald Burkholder, Chi Tat Chong, Ward Henson, Zhuxin Hu, Jerome Keisler, Ali Khan, Peter Loeb, Walter Trockel, and Jerry Uhl for helpful conversations and encouragement. The research is partially supported by the National University of Singapore, grant no. RP3920641.
Article copyright:
© Copyright 1997
American Mathematical Society