Coherent functors, with application to torsion in the Picard group
HTML articles powered by AMS MathViewer
- by David B. Jaffe
- Trans. Amer. Math. Soc. 349 (1997), 481-527
- DOI: https://doi.org/10.1090/S0002-9947-97-01616-4
- PDF | Request permission
Abstract:
Let $A$ be a commutative noetherian ring. We investigate a class of functors from $\lBrack$commutative $A$-algebras$\rBrack$ to $\lBrack$sets$\rBrack$, which we call coherent. When such a functor $F$ in fact takes its values in $\lBrack$abelian groups$\rBrack$, we show that there are only finitely many prime numbers $p$ such that ${}_pF(A)$ is infinite, and that none of these primes are invertible in $A$. This (and related statements) yield information about torsion in $\operatorname {Pic}(A)$. For example, if $A$ is of finite type over $\mathbb {Z}$, we prove that the torsion in $\operatorname {Pic}(A)$ is supported at a finite set of primes, and if ${}_p\operatorname {Pic}(A)$ is infinite, then the prime $p$ is not invertible in $A$. These results use the (already known) fact that if such an $A$ is normal, then $\operatorname {Pic}(A)$ is finitely generated. We obtain a parallel result for a reduced scheme $X$ of finite type over $\mathbb {Z}$. We classify the groups which can occur as the Picard group of a scheme of finite type over a finite field.References
- M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Ătudes Sci. Publ. Math. 36 (1969), 23â58. MR 268188, DOI 10.1007/BF02684596
- â, Letter to Grothendieck, Nov. 5, 1968.
- M. Artin, Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21â71. MR 0260746
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Maurice Auslander, Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 189â231. MR 0212070
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- â, Introduction to some methods of algebraic $K$-theory, Conf. Board Math. Sci. Regional Conf. Ser. Math., no. 20, Amer. Math. Soc., Providence, RI, 1974.
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285, DOI 10.1515/9781400882069
- J. E. Bertin, GĂ©nĂ©ralitĂ©s sur les prĂ©schĂ©mas en groupes, SchĂ©mas en Groupes (SĂ©m. GĂ©omĂ©trie AlgĂ©brique, Inst. Hautes Ătudes Sci., 1963/64) Inst. Hautes Ătudes Sci., Paris, 1965, pp. Fasc. 2a, ExposĂ© 6b, 112. MR 0234961
- N. Bourbaki, Algebra. II. Chapters 4â7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie. MR 1080964
- Luther Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219â222. MR 195889, DOI 10.2140/pjm.1966.18.219
- Henri Cohen, Un faisceau qui ne peut pas ĂȘtre dĂ©tordu universellement, C. R. Acad. Sci. Paris SĂ©r. A-B 272 (1971), A799âA802 (French). MR 288124
- â, DĂ©torsion universelle de faisceaux cohĂ©rents, thesis (Docteur $3^\circ$ Cycle), Univ. Paris-XI (Orsay), 1972.
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254, DOI 10.1007/978-3-642-88405-4
- L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. MR 0106942
- Peter Scherk, Bemerkungen zu einer Note von Besicovitch, J. London Math. Soc. 14 (1939), 185â192 (German). MR 29, DOI 10.1112/jlms/s1-14.3.185
- A. Grothendieck, ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. III. Ătude cohomologique des faisceaux cohĂ©rents. II, Inst. Hautes Ătudes Sci. Publ. Math. 17 (1963), 91 (French). MR 163911
- â, ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV (part three), Inst. Hautes Ătudes Sci. Publ. Math. 28 (1966).
- â, ĂlĂ©ments de GĂ©omĂ©trie AlgĂ©brique. I, 2nd ed., Springer-Verlag, New York, 1971. Zbl. 203, 233.
- R. Guralnick, D. B. Jaffe, W. Raskind and R. Wiegand, On the Picard group: torsion and the kernel induced by a faithfully flat map, J. Algebra (to appear).
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- ThĂ©orie des intersections et thĂ©orĂšme de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois-Marie 1966â1967 (SGA 6); DirigĂ© par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York-Heidelberg, 1977. MR 0466081, DOI 10.1007/978-1-4684-0047-2
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- Serge Lang, Algebra, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. MR 783636
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
Bibliographic Information
- David B. Jaffe
- Affiliation: Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323
- Email: jaffe@cpthree.unl.edu
- Received by editor(s): July 1, 1994
- Received by editor(s) in revised form: September 19, 1995
- Additional Notes: Partially supported by the National Science Foundation
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 481-527
- MSC (1991): Primary 14C22, 18A25, 14K30, 18A40
- DOI: https://doi.org/10.1090/S0002-9947-97-01616-4
- MathSciNet review: 1351490