Enriched $P$-Partitions
HTML articles powered by AMS MathViewer
- by John R. Stembridge
- Trans. Amer. Math. Soc. 349 (1997), 763-788
- DOI: https://doi.org/10.1090/S0002-9947-97-01804-7
- PDF | Request permission
Abstract:
An (ordinary) $P$-partition is an order-preserving map from a partially ordered set to a chain, with special rules specifying where equal values may occur. Examples include number-theoretic partitions (ordered and unordered, strict or unrestricted), plane partitions, and the semistandard tableaux associated with Schur’s $S$-functions. In this paper, we introduce and develop a theory of enriched $P$-partitions; like ordinary $P$-partitions, these are order-preserving maps from posets to chains, but with different rules governing the occurrence of equal values. The principal examples of enriched $P$-partitions given here are the tableaux associated with Schur’s $Q$-functions. In a sequel to this paper, further applications related to commutation monoids and reduced words in Coxeter groups will be presented.References
- Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106. MR 963833, DOI 10.1090/memo/0413
- Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128, DOI 10.1007/978-94-010-2196-8
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- P. N. Hoffman and J. F. Humphreys, Projective representations of the symmetric groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. $Q$-functions and shifted tableaux; Oxford Science Publications. MR 1205350
- Tadeusz Józefiak, Characters of projective representations of symmetric groups, Exposition. Math. 7 (1989), no. 3, 193–247. MR 1007885
- Tadeusz Józefiak and Piotr Pragacz, A determinantal formula for skew $Q$-functions, J. London Math. Soc. (2) 43 (1991), no. 1, 76–90. MR 1099087, DOI 10.1112/jlms/s2-43.1.76
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- Piotr Pragacz, Algebro-geometric applications of Schur $S$- and $Q$-polynomials, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR 1180989, DOI 10.1007/BFb0083503
- Bruce E. Sagan, Shifted tableaux, Schur $Q$-functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), no. 1, 62–103. MR 883894, DOI 10.1016/0097-3165(87)90047-1
- I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155–250.
- Richard P. Stanley, Ordered structures and partitions, Memoirs of the American Mathematical Society, No. 119, American Mathematical Society, Providence, R.I., 1972. MR 0332509
- Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. MR 847717, DOI 10.1007/978-1-4615-9763-6
- R. P. Stanley, Flag-symmetric and locally rank-symmetric partially ordered sets, Electron. J. Combin. 3 (1996), Research Paper 6.
- John R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), no. 1, 87–134. MR 991411, DOI 10.1016/0001-8708(89)90005-4
- John R. Stembridge, On symmetric functions and the spin characters of $S_n$, Topics in algebra, Part 2 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 433–453. MR 1171291
- John R. Stembridge, Nonintersecting paths, Pfaffians, and plane partitions, Adv. Math. 83 (1990), no. 1, 96–131. MR 1069389, DOI 10.1016/0001-8708(90)90070-4
- David G. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163 (1992), no. 2, 459–483. MR 1145841, DOI 10.1016/0022-247X(92)90261-B
Bibliographic Information
- John R. Stembridge
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109
- Received by editor(s): August 25, 1994
- Additional Notes: Partially supported by NSF Grants DMS–9057192 and DMS–9401575
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 763-788
- MSC (1991): Primary {06A07, 05E05}
- DOI: https://doi.org/10.1090/S0002-9947-97-01804-7
- MathSciNet review: 1389788