## Enriched $P$-Partitions

HTML articles powered by AMS MathViewer

- by John R. Stembridge
- Trans. Amer. Math. Soc.
**349**(1997), 763-788 - DOI: https://doi.org/10.1090/S0002-9947-97-01804-7
- PDF | Request permission

## Abstract:

An (ordinary) $P$-partition is an order-preserving map from a partially ordered set to a chain, with special rules specifying where equal values may occur. Examples include number-theoretic partitions (ordered and unordered, strict or unrestricted), plane partitions, and the semistandard tableaux associated with Schur’s $S$-functions. In this paper, we introduce and develop a theory of enriched $P$-partitions; like ordinary $P$-partitions, these are order-preserving maps from posets to chains, but with different rules governing the occurrence of equal values. The principal examples of enriched $P$-partitions given here are the tableaux associated with Schur’s $Q$-functions. In a sequel to this paper, further applications related to commutation monoids and reduced words in Coxeter groups will be presented.## References

- Francesco Brenti,
*Unimodal, log-concave and Pólya frequency sequences in combinatorics*, Mem. Amer. Math. Soc.**81**(1989), no. 413, viii+106. MR**963833**, DOI 10.1090/memo/0413 - Louis Comtet,
*Advanced combinatorics*, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR**0460128**, DOI 10.1007/978-94-010-2196-8 - Ira M. Gessel,
*Multipartite $P$-partitions and inner products of skew Schur functions*, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR**777705**, DOI 10.1090/conm/034/777705 - P. N. Hoffman and J. F. Humphreys,
*Projective representations of the symmetric groups*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. $Q$-functions and shifted tableaux; Oxford Science Publications. MR**1205350** - Tadeusz Józefiak,
*Characters of projective representations of symmetric groups*, Exposition. Math.**7**(1989), no. 3, 193–247. MR**1007885** - Tadeusz Józefiak and Piotr Pragacz,
*A determinantal formula for skew $Q$-functions*, J. London Math. Soc. (2)**43**(1991), no. 1, 76–90. MR**1099087**, DOI 10.1112/jlms/s2-43.1.76 - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR**553598** - Piotr Pragacz,
*Algebro-geometric applications of Schur $S$- and $Q$-polynomials*, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR**1180989**, DOI 10.1007/BFb0083503 - Bruce E. Sagan,
*Shifted tableaux, Schur $Q$-functions, and a conjecture of R. Stanley*, J. Combin. Theory Ser. A**45**(1987), no. 1, 62–103. MR**883894**, DOI 10.1016/0097-3165(87)90047-1 - I. Schur,
*Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen*, J. Reine Angew. Math.**139**(1911), 155–250. - Richard P. Stanley,
*Ordered structures and partitions*, Memoirs of the American Mathematical Society, No. 119, American Mathematical Society, Providence, R.I., 1972. MR**0332509** - Richard P. Stanley,
*Enumerative combinatorics. Vol. I*, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. MR**847717**, DOI 10.1007/978-1-4615-9763-6 - R. P. Stanley,
*Flag-symmetric and locally rank-symmetric partially ordered sets*, Electron. J. Combin.**3**(1996), Research Paper 6. - John R. Stembridge,
*Shifted tableaux and the projective representations of symmetric groups*, Adv. Math.**74**(1989), no. 1, 87–134. MR**991411**, DOI 10.1016/0001-8708(89)90005-4 - John R. Stembridge,
*On symmetric functions and the spin characters of $S_n$*, Topics in algebra, Part 2 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 433–453. MR**1171291** - John R. Stembridge,
*Nonintersecting paths, Pfaffians, and plane partitions*, Adv. Math.**83**(1990), no. 1, 96–131. MR**1069389**, DOI 10.1016/0001-8708(90)90070-4 - David G. Wagner,
*Total positivity of Hadamard products*, J. Math. Anal. Appl.**163**(1992), no. 2, 459–483. MR**1145841**, DOI 10.1016/0022-247X(92)90261-B

## Bibliographic Information

**John R. Stembridge**- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109–1109
- Received by editor(s): August 25, 1994
- Additional Notes: Partially supported by NSF Grants DMS–9057192 and DMS–9401575
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**349**(1997), 763-788 - MSC (1991): Primary {06A07, 05E05}
- DOI: https://doi.org/10.1090/S0002-9947-97-01804-7
- MathSciNet review: 1389788