Hilbert-Kunz functions and Frobenius functors
HTML articles powered by AMS MathViewer
- by Shou-Te Chang
- Trans. Amer. Math. Soc. 349 (1997), 1091-1119
- DOI: https://doi.org/10.1090/S0002-9947-97-01704-2
- PDF | Request permission
Abstract:
We study the asymptotic behavior as a function of $e$ of the lengths of the cohomology of certain complexes. These complexes are obtained by applying the $e$-th iterated Frobenius functor to a fixed finite free complex with only finite length cohomology and then tensoring with a fixed finitely generated module. The rings involved here all have positive prime characteristic. For the zeroth homology, these functions also contain the class of Hilbert-Kunz functions that a number of other authors have studied. This asymptotic behavior is connected with certain intrinsic dimensions introduced in this paper: these are defined in terms of the Krull dimensions of the Matlis duals of the local cohomology of the module. There is a more detailed study of this behavior when the given complex is a Koszul complex.References
- David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268. MR 314819, DOI 10.1016/0021-8693(73)90044-6
- A. Conca, Hilbert-Kunz function of monomial ideals and binomial hypersurfaces, preprint.
- M. Contessa, On the Hilbert-Kunz function and Koszul homology, J. Algebra 175 (1995), no. 3, 757–766. MR 1341744, DOI 10.1006/jabr.1995.1212
- Sankar P. Dutta, Frobenius and multiplicities, J. Algebra 85 (1983), no. 2, 424–448. MR 725094, DOI 10.1016/0021-8693(83)90106-0
- S. P. Dutta, Ext and Frobenius, J. Algebra 127 (1989), no. 1, 163–177. MR 1029410, DOI 10.1016/0021-8693(89)90281-0
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620, DOI 10.1007/BFb0073971
- Jürgen Herzog, Ringe der Charakteristik $p$ und Frobeniusfunktoren, Math. Z. 140 (1974), 67–78 (German). MR 352081, DOI 10.1007/BF01218647
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Melvin Hochster and Craig Huneke, Tight closure and strong $F$-regularity, Mém. Soc. Math. France (N.S.) 38 (1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044348
- Melvin Hochster and Craig Huneke, Phantom homology, Mem. Amer. Math. Soc. 103 (1993), no. 490, vi+91. MR 1144758, DOI 10.1090/memo/0490
- Melvin Hochster and Craig Huneke, $F$-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 1–62. MR 1273534, DOI 10.1090/S0002-9947-1994-1273534-X
- C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), no. 1, 119–135. MR 1234602, DOI 10.1007/BF02572395
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI 10.2307/2373351
- Ernst Kunz, On Noetherian rings of characteristic $p$, Amer. J. Math. 98 (1976), no. 4, 999–1013. MR 432625, DOI 10.2307/2374038
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), no. 1, 43–49. MR 697329, DOI 10.1007/BF01457082
- Ronald J. Evans and William A. Root, Conjectures for Selberg character sums, J. Ramanujan Math. Soc. 3 (1988), no. 1, 111–128. MR 975841
- D. G. Northcott, Finite free resolutions, Cambridge Tracts in Mathematics, No. 71, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0460383, DOI 10.1017/CBO9780511565892
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130, DOI 10.1007/BF02685877
- Paul Roberts, Le théorème d’intersection, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 7, 177–180 (French, with English summary). MR 880574
- Paul Roberts, Intersection theorems, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 417–436. MR 1015532, DOI 10.1007/978-1-4612-3660-3_{2}3
- Gerhard Seibert, Complexes with homology of finite length and Frobenius functors, J. Algebra 125 (1989), no. 2, 278–287. MR 1018945, DOI 10.1016/0021-8693(89)90164-6
- Jean-Pierre Serre, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel; Seconde édition, 1965. MR 0201468, DOI 10.1007/978-3-662-21576-0
- Jan R. Strooker, Homological questions in local algebra, London Mathematical Society Lecture Note Series, vol. 145, Cambridge University Press, Cambridge, 1990. MR 1074178, DOI 10.1017/CBO9780511629242
- L. Szpiro, Sur la théorie des complexes parfaits, Commutative algebra: Durham 1981 (Durham, 1981) London Math. Soc. Lecture Note Ser., vol. 72, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 83–90. MR 693628
Bibliographic Information
- Shou-Te Chang
- Affiliation: Department of Mathematics, National Chung Cheng University, Minghsiung, Chiayi 621, Taiwan, R. O. C.
- Email: stchang@math.ccu.edu.tw
- Received by editor(s): August 20, 1995
- Additional Notes: Part of this work was done at the University of Michigan. The author would like to thank Professor Melvin Hochster for his many useful suggestions. The author is also partially supported by a grant from the National Science Council of R. O. C
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1091-1119
- MSC (1991): Primary 13A35; Secondary 13D03, 13D05, 13D25, 13D45, 18G15, 18G40
- DOI: https://doi.org/10.1090/S0002-9947-97-01704-2
- MathSciNet review: 1370637