Strassen theorems for a class of iterated processes
HTML articles powered by AMS MathViewer
- by Endre Csáki, Antónia Földes and Pál Révész
- Trans. Amer. Math. Soc. 349 (1997), 1153-1167
- DOI: https://doi.org/10.1090/S0002-9947-97-01717-0
- PDF | Request permission
Abstract:
A general direct Strassen theorem is proved for a class of stochastic processes and applied for iterated processes such as $W(L_t)$, where $W(\cdot )$ is a standard Wiener process and $L_.$ is a local time of a Lévy process independent from $W(\cdot )$.References
- M. A. Arcones, On the law of the iterated logarithm for Gaussian processes and their compositions, J. Theor. Probab. 8 (1995), 877-903.
- J. Bertoin, Iterated Brownian motion and stable (1/4) subordinator, Statist. Probab. Letters 27 (1996), 111-114.
- Krzysztof Burdzy, Some path properties of iterated Brownian motion, Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992) Progr. Probab., vol. 33, Birkhäuser Boston, Boston, MA, 1993, pp. 67–87. MR 1278077, DOI 10.1007/978-1-4612-0339-1_{3}
- Krzysztof Burdzy, Variation of iterated Brownian motion, Measure-valued processes, stochastic partial differential equations, and interacting systems (Montreal, PQ, 1992) CRM Proc. Lecture Notes, vol. 5, Amer. Math. Soc., Providence, RI, 1994, pp. 35–53. MR 1278281, DOI 10.1090/crmp/005/03
- S. Kalpazidou, Rotational representations of transition matrix functions, Ann. Probab. 22 (1994), no. 2, 703–712. MR 1288128, DOI 10.1214/aop/1176988726
- E. Csáki, M. Csörgő, A. Földes, and P. Révész, Strong approximation of additive functionals, J. Theoret. Probab. 5 (1992), no. 4, 679–706. MR 1182676, DOI 10.1007/BF01058725
- E. Csáki, M. Csörgő, A. Földes and P. Révész, Global Strassen-type theorems for iterated Brownian motions, Stochastic Proc. Appl. 59 (1995), 321-341.
- M. Csörgő and P. Révész, Strong approximations in probability and statistics, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 666546
- Claude Dellacherie and Paul-André Meyer, Probabilities and potential, North-Holland Mathematics Studies, vol. 29, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 521810
- Y. Hu, D. Pierre-Loti-Viaud, and Z. Shi, Laws of the iterated logarithm for iterated Wiener processes, J. Theoret. Probab. 8 (1995), no. 2, 303–319. MR 1325853, DOI 10.1007/BF02212881
- Y. Hu and Z. Shi, The Csörgő-Révész modulus of non-differentiability of iterated Brownian motion, Stochastic Proc. Appl. 58 (1995), 267-279.
- D. Khoshnevisan, The rate of convergence in the ratio ergodic theorem for Markov processes, Preprint, 1995.
- D. Khoshnevisan and T. M. Lewis, The uniform modulus of continuity of iterated Brownian motion, J. Theor. Probab. 9 (1996), 317–333.
- D. Khoshnevisan and T. M. Lewis, Chung’s law of the iterated logarithm for iterated Brownian motion, Ann. Inst. H. Poincarè 32 (1996), 349-359.
- D. Khoshnevisan, T. M. Lewis and Z. Shi, Upper functions of iterated Brownian motion, Preprint, 1994.
- Michael B. Marcus and Jay Rosen, Laws of the iterated logarithm for the local times of symmetric Levy processes and recurrent random walks, Ann. Probab. 22 (1994), no. 2, 626–658. MR 1288125
- Z. Shi, Lower limits of iterated Wiener processes, Statist. Probab. Letters 23 (1995), 259-270.
- Z. Shi, Liminf results for self-iterated Brownian motion, Preprint, 1994.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211–226 (1964). MR 175194, DOI 10.1007/BF00534910
Bibliographic Information
- Endre Csáki
- Affiliation: Mathematical Institute of the Hungarian Academy of Sciences, Budapest, P.O.B. 127, H-1364, Hungary
- Email: csaki@novell.math-inst.hu
- Antónia Földes
- Affiliation: College of Staten Island, CUNY, 2800 Victory Blvd., Staten Island, New York 10314
- Email: foldes@postbox.csi.cuny.edu
- Pál Révész
- Affiliation: Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, A-1040 Wien, Austria
- Email: revesz@ci.tuwien.ac.at
- Received by editor(s): August 3, 1995
- Additional Notes: The first author was supported by the Hungarian National Foundation for Scientific Research, Grant No. T 016384 and T 019346
The second author was supported by a PSC CUNY Grant, No. 6-663642 - © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1153-1167
- MSC (1991): Primary 60J65; Secondary 60F15, 60F17
- DOI: https://doi.org/10.1090/S0002-9947-97-01717-0
- MathSciNet review: 1373631