Structure of Lorentzian tori with a killing vector field
HTML articles powered by AMS MathViewer
- by Miguel Sánchez
- Trans. Amer. Math. Soc. 349 (1997), 1063-1080
- DOI: https://doi.org/10.1090/S0002-9947-97-01745-5
- PDF | Request permission
Abstract:
All Lorentzian tori with a non-discrete group of isometries are characterized and explicitly obtained. They can lie into three cases: (a) flat, (b) conformally flat but non-flat, and (c) geodesically incomplete. A detailed study of many of their properties (including results on the logical dependence of the three kinds of causal completeness, on geodesic connectedness and on prescribed curvature) is carried out. The incomplete case is specially analyzed, and several known examples and results in the literature are generalized from a unified point of view.References
- John K. Beem, Disprisoning and pseudoconvex manifolds, Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 19–26. MR 1216526, DOI 10.1090/pspum/054.2/1216526
- John K. Beem and Paul E. Ehrlich, Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, vol. 67, Marcel Dekker, Inc., New York, 1981. MR 619853
- Vieri Benci and Donato Fortunato, On the existence of infinitely many geodesics on space-time manifolds, Adv. Math. 105 (1994), no. 1, 1–25. MR 1275190, DOI 10.1006/aima.1994.1036
- Graciela S. Birman and Katsumi Nomizu, The Gauss-Bonnet theorem for $2$-dimensional spacetimes, Michigan Math. J. 31 (1984), no. 1, 77–81. MR 736471, DOI 10.1307/mmj/1029002964
- Z. I. Szabó, Structure theorems on positive definite Berwald spaces and some remarks on a related problem, The Proceedings of the National Seminar on Finsler Spaces (Braşov, 1982) Soc. Ştiinţe Mat. R.S. România, Bucharest, 1982, pp. 209–215. MR 718169
- John T. Burns, Curvature functions on Lorentz $2$-manifolds, Pacific J. Math. 70 (1977), no. 2, 325–335. MR 514851, DOI 10.2140/pjm.1977.70.325
- Yves Carrière and Luc Rozoy, Complétude des métriques lorentziennes de $\textbf {T}^2$ et difféormorphismes du cercle, Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 2, 223–235 (French, with English summary). MR 1306563, DOI 10.1007/BF01321310
- G. D’Ambra, Isometry groups of Lorentz manifolds, Invent. Math. 92 (1988), no. 3, 555–565. MR 939475, DOI 10.1007/BF01393747
- G. D’Ambra and M. Gromov, Lectures on transformation groups: geometry and dynamics, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 19–111. MR 1144526
- H. M. Farkas and I. Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765, DOI 10.1007/978-1-4612-2034-3
- Gregory J. Galloway, Compact Lorentzian manifolds without closed nonspacelike geodesics, Proc. Amer. Math. Soc. 98 (1986), no. 1, 119–123. MR 848888, DOI 10.1090/S0002-9939-1986-0848888-7
- Fabio Giannoni, On the existence of homoclinic orbits on Riemannian manifolds, Ergodic Theory Dynam. Systems 14 (1994), no. 1, 103–127. MR 1268711, DOI 10.1017/S0143385700007744
- Steven Harris, Conformally stationary spacetimes, Classical Quantum Gravity 9 (1992), no. 7, 1823–1827. MR 1173295, DOI 10.1088/0264-9381/9/7/013
- D.J. Jee, Gauss-Bonnet formula for general Lorentzian surfaces, Geometriae Dedicata 15 (1984) 215-231.
- Yoshinobu Kamishima, Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields, J. Differential Geom. 37 (1993), no. 3, 569–601. MR 1217161
- J.L. Kazdan, Some applications of partial differential equations to problems in geometry, Surveys in Geometry Series, Tokyo Univ. 1983.
- Shoshichi Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972. MR 0355886, DOI 10.1007/978-3-642-61981-6
- Ravi S. Kulkarni and Frank Raymond, $3$-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985), no. 2, 231–268. MR 816671
- Ravi S. Kulkarni, Proper actions and pseudo-Riemannian space forms, Adv. in Math. 40 (1981), no. 1, 10–51. MR 616159, DOI 10.1016/0001-8708(81)90031-1
- R. S. Kulkarni, An analogue of the Riemann mapping theorem for Lorentz metrics, Proc. Roy. Soc. London Ser. A 401 (1985), no. 1820, 117–130. MR 807317
- Jerry L. Kazdan and F. W. Warner, Curvature functions for compact $2$-manifolds, Ann. of Math. (2) 99 (1974), 14–47. MR 343205, DOI 10.2307/1971012
- J. Lafuente López, A geodesic completeness theorem for locally symmetric Lorentz manifolds, Rev. Mat. Univ. Complut. Madrid 1 (1988), no. 1-3, 101–110. MR 977043
- Antonio Masiello, On the existence of a closed geodesic in stationary Lorentz manifolds, J. Differential Equations 104 (1993), no. 1, 48–59. MR 1224121, DOI 10.1006/jdeq.1993.1063
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Alfonso Romero and Miguel Sánchez, On the completeness of geodesics obtained as a limit, J. Math. Phys. 34 (1993), no. 8, 3768–3774. MR 1230550, DOI 10.1063/1.530057
- Alfonso Romero and Miguel Sánchez, New properties and examples of incomplete Lorentzian tori, J. Math. Phys. 35 (1994), no. 4, 1992–1997. MR 1267937, DOI 10.1063/1.530584
- Alfonso Romero and Miguel Sánchez, On completeness of certain families of semi-Riemannian manifolds, Geom. Dedicata 53 (1994), no. 1, 103–117. MR 1299888, DOI 10.1007/BF01264047
- Alfonso Romero and Miguel Sánchez, On completeness of compact Lorentzian manifolds, Geometry and topology of submanifolds, VI (Leuven, 1993/Brussels, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 171–182. MR 1315099
- A. Romero, M.Sánchez, An integral inequality on compact Lorentz manifolds and its applications, to appear in Bull. London Math. Soc.
- J. Wolfgang Smith, Lorentz structures on the plane, Trans. Amer. Math. Soc. 95 (1960), 226–237. MR 117678, DOI 10.1090/S0002-9947-1960-0117678-1
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
- Rainer Kurt Sachs and Hung Hsi Wu, General relativity for mathematicians, Graduate Texts in Mathematics, Vol. 48, Springer-Verlag, New York-Heidelberg, 1977. MR 0503498, DOI 10.1007/978-1-4612-9903-5
- N. R. Wallach and F. W. Warner, Curvature forms for 2-manifolds, Proc. Amer. Math. Soc. 25 (1970), 712–713. MR 262976, DOI 10.1090/S0002-9939-1970-0262976-6
- Ulvi Yurtsever, Test fields on compact space-times, J. Math. Phys. 31 (1990), no. 12, 3064–3078. MR 1079255, DOI 10.1063/1.528960
Bibliographic Information
- Miguel Sánchez
- Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain
- Email: sanchezm@goliat.ugr.es
- Received by editor(s): July 6, 1995
- Additional Notes: This research has been partially supported by a DGICYT Grant No. PB94-0796
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1063-1080
- MSC (1991): Primary 53C50, 53C22
- DOI: https://doi.org/10.1090/S0002-9947-97-01745-5
- MathSciNet review: 1376554