Mean-boundedness and Littlewood-Paley for separation-preserving operators
HTML articles powered by AMS MathViewer
- by Earl Berkson and T. A. Gillespie
- Trans. Amer. Math. Soc. 349 (1997), 1169-1189
- DOI: https://doi.org/10.1090/S0002-9947-97-01896-5
- PDF | Request permission
Abstract:
Suppose that $(\Omega ,\mathcal {M},\mu )$ is a $\sigma$-finite measure space, $1<p<\infty$, and $T: L^{p}(\mu )\to L^{p}(\mu )$ is a bounded, invertible, separation-preserving linear operator such that the linear modulus of $T$ is mean-bounded. We show that $T$ has a spectral representation formally resembling that for a unitary operator, but involving a family of projections in $L^{p}(\mu )$ which has weaker properties than those associated with a countably additive Borel spectral measure. This spectral decomposition for $T$ is shown to produce a strongly countably spectral measure on the âdyadic sigma-algebraâ of $\mathbb {T}$, and to furnish $L^{p}(\mu )$ with abstract analogues of the classical Littlewood-Paley and Vector-Valued M. Riesz Theorems for $\ell ^{p}(\mathbb {Z})$.References
- P. Auscher and M. J. Carro, On relations between operators on $\textbf {R}^N,\;\textbf {T}^N$ and $\textbf {Z}^N$, Studia Math. 101 (1992), no. 2, 165â182. MR 1149570, DOI 10.4064/sm-101-2-165-182
- S. Banach, Théorie des Opérations Linéaires, Monografje Matematyczne, Tom I, Warsaw, 1932.
- Earl Berkson, Jean Bourgain, and T. A. Gillespie, On the almost everywhere convergence of ergodic averages for power-bounded operators on $L^p$-subspaces, Integral Equations Operator Theory 14 (1991), no. 5, 678â715. MR 1118968, DOI 10.1007/BF01200555
- Earl Berkson and T. A. Gillespie, AC functions on the circle and spectral families, J. Operator Theory 13 (1985), no. 1, 33â47. MR 768300
- Earl Berkson and T. A. Gillespie, SteÄkinâs theorem, transference, and spectral decompositions, J. Funct. Anal. 70 (1987), no. 1, 140â170. MR 870759, DOI 10.1016/0022-1236(87)90128-5
- Earl Berkson and T. A. Gillespie, SteÄkinâs theorem, transference, and spectral decompositions, J. Funct. Anal. 70 (1987), no. 1, 140â170. MR 870759, DOI 10.1016/0022-1236(87)90128-5
- Earl Berkson and T. A. Gillespie, The spectral decomposition of weighted shifts and the $A_p$ condition, Colloq. Math. 60/61 (1990), no. 2, 507â518. MR 1096392, DOI 10.4064/cm-60-61-2-507-518
- Earl Berkson and Thomas Alastair Gillespie, La $q$-variation des fonctions et lâintĂ©gration spectrale des multiplicateurs de Fourier, C. R. Acad. Sci. Paris SĂ©r. I Math. 318 (1994), no. 9, 817â820 (French, with English and French summaries). MR 1273911
- A.-P. CalderĂłn, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349â353. MR 227354, DOI 10.1073/pnas.59.2.349
- Ronald R. Coifman and Guido Weiss, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotation method and multipliers, Studia Math. 47 (1973), 285â303. MR 336233, DOI 10.4064/sm-47-3-285-303
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82â96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 90, Springer-Verlag, Berlin-New York, 1977. MR 0618663, DOI 10.1007/978-3-642-66366-6
- JosĂ© GarcĂa-Cuerva and JosĂ© L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de MatemĂĄtica [Mathematical Notes], 104. MR 807149
- T. A. Gillespie, A spectral theorem for $L^{p}$ translations, J. London Math. Soc. (2) 11 (1975), no. 4, 499â508. MR 380498, DOI 10.1112/jlms/s2-11.4.499
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227â251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Charn Huen Kan, Ergodic properties of Lamperti operators, Canadian J. Math. 30 (1978), no. 6, 1206â1214. MR 511557, DOI 10.4153/CJM-1978-100-x
- Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235â254. MR 561835, DOI 10.1090/S0002-9947-1980-0561835-X
- John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459â466. MR 105017, DOI 10.2140/pjm.1958.8.459
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- MarĂa Lorente DomĂnguez and Francisco Javier MartĂn-Reyes, The ergodic Hilbert transform for CesĂ ro bounded flows, Tohoku Math. J. (2) 46 (1994), no. 4, 541â556. MR 1301288, DOI 10.2748/tmj/1178225679
- F.J. MartĂn-Reyes and A. de la Torre, The dominated ergodic theorem for invertible, positive operators, Semesterbericht Funktionalanalysis TĂŒbingen, Sommersemester 1985, pp. 143â150.
- F. J. MartĂn-Reyes and A. De la Torre, The dominated ergodic estimate for mean bounded, invertible, positive operators, Proc. Amer. Math. Soc. 104 (1988), no. 1, 69â75. MR 958045, DOI 10.1090/S0002-9939-1988-0958045-3
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207â226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Ryotaro Sato, A remark on the ergodic Hilbert transform, Math. J. Okayama Univ. 28 (1986), 159â163 (1987). MR 885025
- E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), no. 1, 53â61. MR 849466, DOI 10.1090/S0002-9947-1986-0849466-0
Bibliographic Information
- Earl Berkson
- Affiliation: Department of Mathematics, University of Illinois, 1409 West Green St., Urbana, Illinois 61801
- Email: berkson@symcom.math.uiuc.edu
- T. A. Gillespie
- Affiliation: Department of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, Scotland
- Email: t.a.gillespie@edinburgh.ac.uk
- Received by editor(s): August 17, 1995
- Additional Notes: The work of the first author was supported by a grant from the National Science Foundation (U.S.A.).
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1169-1189
- MSC (1991): Primary 42A45, 42B25, 46E30, 47B40
- DOI: https://doi.org/10.1090/S0002-9947-97-01896-5
- MathSciNet review: 1407694