A Characterization of Finitely Decidable Congruence Modular Varieties
HTML articles powered by AMS MathViewer
- by Paweł M. Idziak
- Trans. Amer. Math. Soc. 349 (1997), 903-934
- DOI: https://doi.org/10.1090/S0002-9947-97-01904-1
- PDF | Request permission
Abstract:
For every finitely generated, congruence modular variety $\mathcal {V}$ of finite type we find a finite family $\mathcal {R}$ of finite rings such that the variety $\mathcal {V}$ is finitely decidable if and only if $\mathcal {V}$ is congruence permutable and residually small, all solvable congruences in finite algebras from $\mathcal {V}$ are Abelian, each congruence above the centralizer of the monolith of a subdirectly irreducible algebra $\mathbf {A}$ from $\mathcal {V}$ is comparable with all congruences of $\mathbf {A}$, each homomorphic image of a subdirectly irreducible algebra with a non-Abelian monolith has a non-Abelian monolith, and, for each ring $R$ from $\mathcal {R}$, the variety of $R$–modules is finitely decidable.References
- M.H.Albert, A sufficient condition for finite decidability, manuscript, 1991.
- Stanley Burris and Ralph McKenzie, Decidability and Boolean representations, Mem. Amer. Math. Soc. 32 (1981), no. 246, viii+106. MR 617896, DOI 10.1090/memo/0246
- Stanley Burris, Ralph McKenzie, and Matthew Valeriote, Decidable discriminator varieties from unary varieties, J. Symbolic Logic 56 (1991), no. 4, 1355–1368. MR 1136462, DOI 10.2307/2275480
- Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR 648287, DOI 10.1007/978-1-4613-8130-3
- Stephen D. Comer, Elementary properties of structures of sections, Bol. Soc. Mat. Mexicana (2) 19 (1974), no. 2, 78–85. MR 437333
- A.Ehrenfeucht, Decidability of the theory of one function, Notices Amer. Math. Soc., 6(1959), 268.
- Ralph Freese and Ralph McKenzie, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, vol. 125, Cambridge University Press, Cambridge, 1987. MR 909290
- George Grätzer, Universal algebra, 2nd ed., Springer-Verlag, New York-Heidelberg, 1979. MR 538623
- David Hobby and Ralph McKenzie, The structure of finite algebras, Contemporary Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988. MR 958685, DOI 10.1090/conm/076
- PawełM. Idziak, Reduced subpowers and the decision problem for finite algebras in arithmetical varieties, Algebra Universalis 25 (1988), no. 3, 365–383. MR 969157, DOI 10.1007/BF01229982
- PawełM. Idziak, Varieties with decidable finite algebras. I. Linearity, Algebra Universalis 26 (1989), no. 2, 234–246. MR 999233, DOI 10.1007/BF01236870
- PawełM. Idziak, Varieties with decidable finite algebras. I. Linearity, Algebra Universalis 26 (1989), no. 2, 234–246. MR 999233, DOI 10.1007/BF01236870
- P.M.Idziak and M.Valeriote, A property of the solvable radical in finitely decidable varieties, manuscript, 1991.
- J.Jeong, On finitely decidable varieties, Ph.D. Thesis, University of California (Berkeley), 1991.
- Joohee Jeong, Finitary decidability implies congruence permutability for congruence modular varieties, Algebra Universalis 29 (1992), no. 3, 441–448. MR 1170199, DOI 10.1007/BF01212443
- Joohee Jeong, Finitely decidable congruence modular varieties, Trans. Amer. Math. Soc. 339 (1993), no. 2, 623–642. MR 1150016, DOI 10.1090/S0002-9947-1993-1150016-6
- Ralph McKenzie, Finite equational bases for congruence modular varieties, Algebra Universalis 24 (1987), no. 3, 224–250. MR 931614, DOI 10.1007/BF01195263
- Ralph McKenzie, Nilpotent and solvable radicals in locally finite congruence modular varieties, Algebra Universalis 24 (1987), no. 3, 251–266. MR 931615, DOI 10.1007/BF01195264
- Ralph McKenzie and Matthew Valeriote, The structure of decidable locally finite varieties, Progress in Mathematics, vol. 79, Birkhäuser Boston, Inc., Boston, MA, 1989. MR 1033992, DOI 10.1007/978-1-4612-4552-0
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Michael O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1–35. MR 246760, DOI 10.1090/S0002-9947-1969-0246760-1
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- A.Tarski, Arithmetical classes and types of Boolean algebras, Bull. Amer. Math. Soc., 55(1949), 64.
- M. A. Valeriote and R. Willard, Discriminating varieties, Algebra Universalis 32 (1994), no. 2, 177–188. MR 1290157, DOI 10.1007/BF01191537
- Heinrich Werner, Discriminator-algebras, Studien zur Algebra und ihre Anwendungen [Studies in Algebra and its Applications], vol. 6, Akademie-Verlag, Berlin, 1978. Algebraic representation and model theoretic properties. MR 526402
- Ross Willard, Decidable discriminator varieties from unary classes, Trans. Amer. Math. Soc. 336 (1993), no. 1, 311–333. MR 1085938, DOI 10.1090/S0002-9947-1993-1085938-8
- Ross Willard, Hereditary undecidability of some theories of finite structures, J. Symbolic Logic 59 (1994), no. 4, 1254–1262. MR 1312308, DOI 10.2307/2275703
- A. P. Zamjatin, A nonabelian variety of groups has an undecidable elementary theory, Algebra i Logika 17 (1978), no. 1, 20–27, 121 (Russian). MR 516387
- A. P. Zamjatin, Prevarieties of associative rings whose elementary theory is decidable, Sibirsk. Mat. Zh. 19 (1978), no. 6, 1266–1282, 1437 (Russian). MR 515180
Bibliographic Information
- Paweł M. Idziak
- Affiliation: Computer Science Department, Jagiellonian University, Kraków, Poland
- Email: idziak@ii.uj.edu.pl
- Received by editor(s): January 26, 1993
- Received by editor(s) in revised form: January 15, 1994
- Additional Notes: Research partially supported by KBN Grant No. 2 P301-029-04 and Fulbright Grant No. 17381.
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 903-934
- MSC (1991): Primary 03B25, 08A05; Secondary 03C13, 08B10, 08B26
- DOI: https://doi.org/10.1090/S0002-9947-97-01904-1
- MathSciNet review: 1407702