Group actions on arrangements of linear subspaces and applications to configuration spaces
HTML articles powered by AMS MathViewer
- by Sheila Sundaram and Volkmar Welker
- Trans. Amer. Math. Soc. 349 (1997), 1389-1420
- DOI: https://doi.org/10.1090/S0002-9947-97-01565-1
- PDF | Request permission
Abstract:
For an arrangement of linear subspaces in $\mathbb {R}^n$ that is invariant under a finite subgroup of the general linear group $Gl_n(\mathbb {R})$ we develop a formula for the $G$-module structure of the cohomology of the complement $\mathcal {M}_{\mathcal {A}}$. Our formula specializes to the well known Goresky-MacPherson theorem in case $G = 1$, but for $G \neq 1$ the formula shows that the $G$-module structure of the complement is not a combinatorial invariant. As an application we are able to describe the free part of the cohomology of the quotient space $\mathcal {M}_{\mathcal {A}}/G$. Our motivating examples are arrangements in $\mathbb {C}^n$ that are invariant under the action of $S_n$ by permuting coordinates. A particular case is the “$k$-equal” arrangement, first studied by Björner, Lovász, and Yao motivated by questions in complexity theory. In these cases $\mathcal {M}_{\mathcal {A}}$ and $\mathcal {M}_{\mathcal {A}}/S_n$ are spaces of ordered and unordered point configurations in $\mathbb {C}^n$ many of whose properties are reduced by our formulas to combinatorial questions in partition lattices. More generally, we treat point configurations in $\mathbb {R}^d$ and provide explicit results for the “$k$-equal” and the “$k$-divisible” cases.References
- V. I. Arnol′d, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227–231 (Russian). MR 242196
- V. I. Arnol′d, Topological invariants of algebraic functions. II, Funkcional. Anal. i Priložen. 4 (1970), no. 2, 1–9 (Russian). MR 0276244
- V. I. Arnol′d, Spaces of functions with moderate singularities, Funktsional. Anal. i Prilozhen. 23 (1989), no. 3, 1–10, 96 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 3, 169–177 (1990). MR 1026983, DOI 10.1007/BF01079522
- Kenneth Bacławski, Whitney numbers of geometric lattices, Advances in Math. 16 (1975), 125–138. MR 387086, DOI 10.1016/0001-8708(75)90145-0
- Anders Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), no. 1, 159–183. MR 570784, DOI 10.1090/S0002-9947-1980-0570784-2
- Anders Björner, On the homology of geometric lattices, Algebra Universalis 14 (1982), no. 1, 107–128. MR 634422, DOI 10.1007/BF02483913
- Anders Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math. 52 (1984), no. 3, 173–212. MR 744856, DOI 10.1016/0001-8708(84)90021-5
- Anders Björner, Subspace arrangements, First European Congress of Mathematics, Vol. I (Paris, 1992) Progr. Math., vol. 119, Birkhäuser, Basel, 1994, pp. 321–370. MR 1341828
- Björner, A., Lovász, L., Yao, A.: Linear decision trees: volume estimates and topological bounds. In: Proc. 24th ACM Symp. on Theory of Computing, pp. 170–177. New York: ACM Press 1992
- Anders Björner and László Lovász, Linear decision trees, subspace arrangements and Möbius functions, J. Amer. Math. Soc. 7 (1994), no. 3, 677–706. MR 1243770, DOI 10.1090/S0894-0347-1994-1243770-0
- Anders Björner and Michelle L. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299–1327. MR 1333388, DOI 10.1090/S0002-9947-96-01534-6
- Anders Björner and James W. Walker, A homotopy complementation formula for partially ordered sets, European J. Combin. 4 (1983), no. 1, 11–19. MR 694463, DOI 10.1016/S0195-6698(83)80003-1
- Anders Björner and Volkmar Welker, The homology of “$k$-equal” manifolds and related partition lattices, Adv. Math. 110 (1995), no. 2, 277–313. MR 1317619, DOI 10.1006/aima.1995.1012
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Egbert Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol′d], Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973, pp. Exp. No. 401, pp. 21–44 (French). MR 0422674
- A. R. Calderbank, P. Hanlon, and R. W. Robinson, Partitions into even and odd block size and some unusual characters of the symmetric groups, Proc. London Math. Soc. (3) 53 (1986), no. 2, 288–320. MR 850222, DOI 10.1112/plms/s3-53.2.288
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146, DOI 10.1007/BFb0080464
- Fred Cohen and Ewing L. Lusk, Configuration-like spaces and the Borsuk-Ulam theorem, Proc. Amer. Math. Soc. 56 (1976), 313–317. MR 425949, DOI 10.1090/S0002-9939-1976-0425949-1
- S. I. Èpšteĭn, Fundamental groups of the spaces of sets of relatively prime polynomials, Funkcional. Anal. i Priložen. 7 (1973), no. 1, 90–91 (Russian). MR 0345126
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118. MR 141126, DOI 10.7146/math.scand.a-10517
- R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119–126. MR 150755, DOI 10.7146/math.scand.a-10518
- D. B. Fuks, Cohomology of the braid group $\textrm {mod}\ 2$, Funkcional. Anal. i Priložen. 4 (1970), no. 2, 62–73 (Russian). MR 0274463
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125, DOI 10.1007/978-3-642-85844-4
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Phil Hanlon, The fixed-point partition lattices, Pacific J. Math. 96 (1981), no. 2, 319–341. MR 637975, DOI 10.2140/pjm.1981.96.319
- Phil Hanlon, The generalized Dowling lattices, Trans. Amer. Math. Soc. 325 (1991), no. 1, 1–37. MR 1014249, DOI 10.1090/S0002-9947-1991-1014249-X
- Yi Hu, On the homology of complements of arrangements of subspaces and spheres, Proc. Amer. Math. Soc. 122 (1994), no. 1, 285–290. MR 1204377, DOI 10.1090/S0002-9939-1994-1204377-6
- Ken Jewell, Complements of sphere and subspace arrangements, Topology Appl. 56 (1994), no. 3, 199–214. MR 1269311, DOI 10.1016/0166-8641(94)90075-2
- G. I. Lehrer and Louis Solomon, On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra 104 (1986), no. 2, 410–424. MR 866785, DOI 10.1016/0021-8693(86)90225-5
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- Merkov, A.B.: Finite-order invariants of ornaments (Preprint 1994).
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- Bruce E. Sagan, Shellability of exponential structures, Order 3 (1986), no. 1, 47–54. MR 850397, DOI 10.1007/BF00403409
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393, DOI 10.1007/BF02684591
- Ju. A. Mitropol′skiĭ and A. N. Bogoljubov, Iosif Zaharovič Štokalo: On his 70th birthday, Ukrain. Mat. Ž. 20 (1968), 92–97 (Russian). MR 0233670
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Richard P. Stanley, Exponential structures, Stud. Appl. Math. 59 (1978), no. 1, 73–82. MR 0480063, DOI 10.1002/sapm197859173
- Richard P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), no. 2, 132–161. MR 654618, DOI 10.1016/0097-3165(82)90017-6
- Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. MR 847717, DOI 10.1007/978-1-4615-9763-6
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- Sundaram, S., Wachs, M.: The homology representations of the k-equal partition lattice. Trans. Amer. Math. Soc., to appear.
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- V. A. Vassiliev, Cohomology of knot spaces, Theory of singularities and its applications, Adv. Soviet Math., vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 23–69. MR 1089670
- V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by B. Goldfarb. MR 1168473, DOI 10.1090/mmono/098
- V. A. Vassiliev, Complexes of connected graphs, The Gel′fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 223–235. MR 1247293
- R. M. Vogt, Homotopy limits and colimits, Proceedings of the International Symposium on Topology and its Applications (Budva, 1972) Savez Društava Mat. Fiz. i Astronom., Belgrade, 1973, pp. 235–241. MR 0334197
- Wachs, M.: A basis for the homology of the d-divisible partition lattice. Adv. in Math. 117 (2), 294–318 (1996).
- Günter M. Ziegler and Rade T. Živaljević, Homotopy types of subspace arrangements via diagrams of spaces, Math. Ann. 295 (1993), no. 3, 527–548. MR 1204836, DOI 10.1007/BF01444901
Bibliographic Information
- Sheila Sundaram
- Affiliation: Department of Mathematics and Computer Science, University of Miami, Coral Gables, Florida 33124
- Address at time of publication: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
- Email: sheila@claude.math.wesleyan.edu
- Volkmar Welker
- Affiliation: Institute for Experimental Mathematics, Ellernstr. 29, 45326 Essen, Germany
- MR Author ID: 310209
- ORCID: 0000-0002-6892-5427
- Email: welker@exp-math.uni-essen.de
- Received by editor(s): January 1, 1965
- Additional Notes: The author acknowledges support by the DFG while he was visiting scholar at MIT
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1389-1420
- MSC (1991): Primary 05E25, 57N65; Secondary 20C30, 55M35
- DOI: https://doi.org/10.1090/S0002-9947-97-01565-1
- MathSciNet review: 1340186