There are no piecewise linear maps of type $2^{\infty }$
HTML articles powered by AMS MathViewer
- by Víctor Jiménez López and L’ubomír Snoha
- Trans. Amer. Math. Soc. 349 (1997), 1377-1387
- DOI: https://doi.org/10.1090/S0002-9947-97-01801-1
- PDF | Request permission
Abstract:
The aim of this paper is to show that there are no piecewise linear maps of type $2^{\infty }$. For this purpose we use the fact that any piecewise monotone map of type $2^{\infty }$ has an infinite $\omega$-limit set which is a subset of a doubling period solenoid. Then we prove that piecewise linear maps cannot have any doubling period solenoids.References
- L. Alsedà, V. Jiménez López and L’. Snoha, On $1$-difactors of Markov graphs and the prevalence of doubling period solenoids, preprint (1995).
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1255515, DOI 10.1142/1980
- Béla Barna, Über die Iteration reeller Funktionen. II, Publ. Math. Debrecen 13 (1966), 169–172 (German). MR 204580, DOI 10.5486/pmd.1966.13.1-4.21
- L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR 1176513, DOI 10.1007/BFb0084762
- H. Bruin, G. Keller, T. Nowicki and S. van Strien, Wild Cantor attractors exist, Ann. of Math. 143 (1996), 97–130.
- A. M. Blokh and M. Yu. Lyubich, Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 751–758. MR 1036906, DOI 10.1017/S0143385700005319
- G. J. Butler and G. Pianigiani, Periodic points and chaotic functions in the unit interval, Bull. Austral. Math. Soc. 18 (1978), no. 2, 255–265. MR 494303, DOI 10.1017/S0004972700008066
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- A. Denjoy, Sur les courbes définies par les équations differentielles à la surface du tore, Jour. Math. Pures Appl. 11 (1932), 333–375.
- V. V. Fedorenko and A. N. Sharkovskiĭ, Continuous mappings of an interval with closed sets of periodic points, An investigation of differential and differential-difference equations (Russian), Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1980, pp. 137–145, 191 (Russian). MR 621132
- John Guckenheimer, On the bifurcation of maps of the interval, Invent. Math. 39 (1977), no. 2, 165–178. MR 438399, DOI 10.1007/BF01390107
- John Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133–160. MR 553966, DOI 10.1007/BF01982351
- V. Jiménez López and L’. Snoha, All maps of type $2^{\infty }$ are boundary maps, Proc. Amer. Math. Soc. (to appear).
- S. F. Kolyada, Mappings of the interval with a zero Schwarzian, Functional-differential equations and their applications (Russian), Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1985, pp. 47–57, iii (Russian). MR 892977
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- M. Yu. Lyubich, Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 737–749. MR 1036905, DOI 10.1017/S0143385700005307
- Mikhail Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2) 140 (1994), no. 2, 347–404. MR 1298717, DOI 10.2307/2118604
- T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
- M. Martens, W. de Melo, and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), no. 3-4, 273–318. MR 1161268, DOI 10.1007/BF02392981
- M. Misiurewicz and J. Smítal, Smooth chaotic maps with zero topological entropy, Ergodic Theory Dynam. Systems 8 (1988), no. 3, 421–424. MR 961740, DOI 10.1017/S0143385700004557
- W. de Melo and S. van Strien, A structure theorem in one-dimensional dynamics, Ann. of Math. (2) 129 (1989), no. 3, 519–546. MR 997312, DOI 10.2307/1971516
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- Marco Martens and Charles Tresser, Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2863–2870. MR 1343712, DOI 10.1090/S0002-9939-96-03508-3
- Chris Preston, Iterates of piecewise monotone mappings on an interval, Lecture Notes in Mathematics, vol. 1347, Springer-Verlag, Berlin, 1988. MR 969131, DOI 10.1007/BFb0079769
- A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Proceedings of the Conference “Thirty Years after Sharkovskiĭ’s Theorem: New Perspectives” (Murcia, 1994), 1995, pp. 1263–1273. Translated from the Russian [Ukrain. Mat. Zh. 16 (1964), no. 1, 61–71; MR0159905 (28 #3121)] by J. Tolosa. MR 1361914, DOI 10.1142/S0218127495000934
- A. N. Sharkovskii, On cycles and the structure of a continuous mapping, Ukrain. Math. Zh. 17 (1965), 104–111 (Russian).
- J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), no. 1, 269–282. MR 849479, DOI 10.1090/S0002-9947-1986-0849479-9
Bibliographic Information
- Víctor Jiménez López
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, Aptdo. de Correos 4021, 30100 Murcia, Spain
- Email: vjimenez@fcu.um.es
- L’ubomír Snoha
- Affiliation: Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
- MR Author ID: 250583
- Email: snoha@bb.sanet.sk
- Received by editor(s): October 10, 1994
- Additional Notes: A part of the work on this paper was done during the stay of the second author at the University of Murcia. The invitation and the support of this institution is gratefully acknowledged.
This work has been partially supported by the DGICYT grant numbers PB91-0575 and PB94-1159 and by the Slovak grant agency, grant number 1/1470/1994.
The main result of this paper was announced at the “Thirty years after Sharkovskii’s Theorem. New perspectives" Conference, held in La Manga (Murcia), Spain, June 13-17th, 1994.
The authors are greatly indebted to the referee for many helpful suggestions which enabled them to shorten and simplify the paper. - © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1377-1387
- MSC (1991): Primary 58F08; Secondary 26A18, 54H20
- DOI: https://doi.org/10.1090/S0002-9947-97-01801-1
- MathSciNet review: 1389785