On Poincaré Type Inequalities
HTML articles powered by AMS MathViewer
- by Roger Chen and Peter Li
- Trans. Amer. Math. Soc. 349 (1997), 1561-1585
- DOI: https://doi.org/10.1090/S0002-9947-97-01813-8
- PDF | Request permission
Abstract:
Using estimates of the heat kernel we prove a Poincaré inequality for star-shape domains on a complete manifold. The method also gives a lower bound for the gap of the first two Neumann eigenvalues of a Schrödinger operator.References
- Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230. MR 683635, DOI 10.24033/asens.1426
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 195–199. MR 0402831
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- Jeff Cheeger and Shing Tung Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), no. 4, 465–480. MR 615626, DOI 10.1002/cpa.3160340404
- Roger Chen, Eigenvalue estimate on a compact Riemannian manifold, Amer. J. Math. 111 (1989), no. 5, 769–781. MR 1020828, DOI 10.2307/2374880
- Roger Chen, Neumann eigenvalue estimate on a compact Riemannian manifold, Proc. Amer. Math. Soc. 108 (1990), no. 4, 961–970. MR 993745, DOI 10.1090/S0002-9939-1990-0993745-X
- A. A. Grigor′yan, The heat equation on noncompact Riemannian manifolds, Mat. Sb. 182 (1991), no. 1, 55–87 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 1, 47–77. MR 1098839
- David Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986), no. 2, 503–523. MR 850547, DOI 10.1215/S0012-7094-86-05329-9
- S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 2, 391–442. MR 914028
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Peter Li and Andrejs Treibergs, Applications of eigenvalue techniques to geometry, Contemporary geometry, Univ. Ser. Math., Plenum, New York, 1991, pp. 21–52. MR 1170358
- Peter Li and Shing Tung Yau, Estimates of eigenvalues of a compact Riemannian manifold, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 205–239. MR 573435
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Daniel Meyer, Minoration de la première valeur propre non nulle du problème de Neumann sur les variétés riemanniennes à bord, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 113–125 (French, with English summary). MR 850747, DOI 10.5802/aif.1051
- Laurent Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), no. 2, 417–450. MR 1180389
- I. M. Singer, Bun Wong, Shing-Tung Yau, and Stephen S.-T. Yau, An estimate of the gap of the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 2, 319–333. MR 829055
- Shing Tung Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 487–507. MR 397619, DOI 10.24033/asens.1299
- Jia Qing Zhong and Hong Cang Yang, On the estimate of the first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27 (1984), no. 12, 1265–1273. MR 794292
Bibliographic Information
- Roger Chen
- Affiliation: Department of Mathematics, National Cheng Kung University, Tainan, Taiwan
- Email: rchen@mail.ncku.edu.tw
- Peter Li
- Affiliation: Department of Mathematics, University of California, Irvine, California 92717-3875
- Email: pli@math.uci.edu
- Received by editor(s): October 12, 1995
- Additional Notes: The second author’s research was partially supported by NSF grant DMS-9300422
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1561-1585
- MSC (1991): Primary 35P15, 58G11, 58G25
- DOI: https://doi.org/10.1090/S0002-9947-97-01813-8
- MathSciNet review: 1401517