Disjoint paths, planarizing cycles, and spanning walks
HTML articles powered by AMS MathViewer
- by Xingxing Yu
- Trans. Amer. Math. Soc. 349 (1997), 1333-1358
- DOI: https://doi.org/10.1090/S0002-9947-97-01830-8
- PDF | Request permission
Abstract:
We study the existence of certain disjoint paths in planar graphs and generalize a theorem of Thomassen on planarizing cycles in surfaces. Results are used to prove that every 5-connected triangulation of a surface with sufficiently large representativity is hamiltonian, thus verifying a conjecture of Thomassen. We also obtain results about spanning walks in graphs embedded in a surface with large representativity.References
- J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976. MR 0411988, DOI 10.1007/978-1-349-03521-2
- Richard Brunet, Mark N. Ellingham, Zhicheng Gao, Alice Metzlar, and R. Bruce Richter, Spanning planar subgraphs of graphs in the torus and Klein bottle, J. Combin. Theory Ser. B 65 (1995), no. 1, 7–22. MR 1347338, DOI 10.1006/jctb.1995.1041
- Richard A. Duke, On the genus and connectivity of Hamiltonian graphs, Discrete Math. 2 (1972), no. 3, 199–206. MR 314670, DOI 10.1016/0012-365X(72)90003-9
- M. N. Ellingham and Zhicheng Gao, Spanning trees in locally planar triangulations, J. Combin. Theory Ser. B 61 (1994), no. 2, 178–198. MR 1280606, DOI 10.1006/jctb.1994.1043
- Zhicheng Gao and R. Bruce Richter, $2$-walks in circuit graphs, J. Combin. Theory Ser. B 62 (1994), no. 2, 259–267. MR 1305052, DOI 10.1006/jctb.1994.1068
- Branko Grünbaum, Polytopes, graphs, and complexes, Bull. Amer. Math. Soc. 76 (1970), 1131–1201. MR 266050, DOI 10.1090/S0002-9904-1970-12601-5
- Allan Gewirtz and Louis V. Quintas (eds.), Second International Conference on Combinatorial Mathematics, Annals of the New York Academy of Sciences, vol. 319, New York Academy of Sciences, New York, 1979. Held in New York, April 4–7, 1978. MR 555999, DOI 10.1070/rm1979v034n06abeh003276
- C. St. J. A. Nash-Williams, Unexplored and semi-explored territories in graph theory, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971) Academic Press, New York, 1973, pp. 149–186. MR 0387097
- A. Hajnal, R. Rado, and Vera T. Sós (eds.), Infinite and finite sets. Vols. I, II, III, Colloquia Mathematica Societatis János Bolyai, Vol. 10, North-Holland Publishing Co., Amsterdam-London; János Bolyai Mathematical Society, Budapest, 1975. Dedicated to Paul Erdős on his 60th birthday. MR 0360076
- Robin Thomas and Xingxing Yu, $4$-connected projective-planar graphs are Hamiltonian, J. Combin. Theory Ser. B 62 (1994), no. 1, 114–132. MR 1290634, DOI 10.1006/jctb.1994.1058
- R. Thomas and X. Yu, 5-connected toroidal graphs are hamiltonian. J. Combinat. Theory Ser. B., in press.
- Carsten Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983), no. 2, 169–176. MR 698698, DOI 10.1002/jgt.3190070205
- Carsten Thomassen, Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory Ser. B 48 (1990), no. 2, 155–177. MR 1046752, DOI 10.1016/0095-8956(90)90115-G
- Carsten Thomassen, Trees in triangulations, J. Combin. Theory Ser. B 60 (1994), no. 1, 56–62. MR 1256583, DOI 10.1006/jctb.1994.1005
- Carsten Thomassen, Five-coloring maps on surfaces, J. Combin. Theory Ser. B 59 (1993), no. 1, 89–105. MR 1234386, DOI 10.1006/jctb.1993.1057
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- H. Whitney, A theorem on graphs. Ann. of Math. 32 (1931) 378–390.
Bibliographic Information
- Xingxing Yu
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- Address at time of publication: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- Email: yu@math.vanderbilt.edu
- Received by editor(s): August 20, 1993
- Additional Notes: Partially supported by NSF grants DMS–9105173 and DMS–9301909
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1333-1358
- MSC (1991): Primary 05C38, 05C10, 57M15
- DOI: https://doi.org/10.1090/S0002-9947-97-01830-8
- MathSciNet review: 1401533