A four-dimensional deformation of a numerical Godeaux surface
HTML articles powered by AMS MathViewer
- by Caryn Werner
- Trans. Amer. Math. Soc. 349 (1997), 1515-1525
- DOI: https://doi.org/10.1090/S0002-9947-97-01892-8
- PDF | Request permission
Abstract:
A numerical Godeaux surface is a surface of general type with invariants $p_g =q =0$ and $K^2 =1$. In this paper the moduli space of a numerical Godeaux surface with order two torsion is computed to be eight-dimensional; whether or not the moduli space of such a surface is irreducible is still unknown. The surface in this paper is constructed as one member of a four parameter family of double planes. There is a natural involution on the surface, inherited from the double plane construction, which acts on the moduli space. We show that the invariant subspace is four-dimensional and coincides with the family of double planes.References
- Rebecca Barlow, Some new surfaces with $p_g=0$, Duke Math. J. 51 (1984), no.ย 4, 889โ904. MR 771386, DOI 10.1215/S0012-7094-84-05139-1
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771โ782. MR 19, DOI 10.2307/2371335
- Campedelli, L., Sopra alcuni piani doppi notevoli con curva di diramazioni del decimo ordine, Atti Acad. Naz. Lincei 15 (1931), 536 - 542.
- F. Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984), no.ย 2, 483โ515. MR 755236, DOI 10.4310/jdg/1214438689
- F. Catanese, Moduli of algebraic surfaces, Theory of moduli (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1337, Springer, Berlin, 1988, pp.ย 1โ83. MR 963062, DOI 10.1007/BFb0082806
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Masahisa Inoue, Some new surfaces of general type, Tokyo J. Math. 17 (1994), no.ย 2, 295โ319. MR 1305801, DOI 10.3836/tjm/1270127954
- Kunihiko Kodaira, Complex manifolds and deformation of complex structures, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 283, Springer-Verlag, New York, 1986. Translated from the Japanese by Kazuo Akao; With an appendix by Daisuke Fujiwara. MR 815922, DOI 10.1007/978-1-4613-8590-5
- Hideyuki Matsumura and Paul Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963/64), 347โ361. MR 168559, DOI 10.1215/kjm/1250524785
- F. Oort and C. Peters, A Campedelli surface with torsion group $\textbf {Z}/2$, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no.ย 4, 399โ407. MR 639857, DOI 10.1016/1385-7258(81)90061-5
- Caryn Werner, A surface of general type with $p_g=q=0$, $K^2=1$, Manuscripta Math. 84 (1994), no.ย 3-4, 327โ341. MR 1291124, DOI 10.1007/BF02567460
Bibliographic Information
- Caryn Werner
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Email: cwerner@math.lsa.umich.edu
- Received by editor(s): September 10, 1995
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1515-1525
- MSC (1991): Primary 14J29, 14J10
- DOI: https://doi.org/10.1090/S0002-9947-97-01892-8
- MathSciNet review: 1407503