The homotopy groups of the $L_2$-localized Toda-Smith spectrum $V(1)$ at the prime 3
HTML articles powered by AMS MathViewer
- by Katsumi Shimomura
- Trans. Amer. Math. Soc. 349 (1997), 1821-1850
- DOI: https://doi.org/10.1090/S0002-9947-97-01710-8
- PDF | Request permission
Abstract:
In this paper, we try to compute the homotopy groups of the $L_2$-localized Toda-Smith spectrum $V(1)$ at the prime 3 by using the Adams-Novikov spectral sequence, and have almost done so. This computation involves non-trivial differentials $d_5$ and $d_9$ of the Adams-Novikov spectral sequence, different from the case $p>3$. We also determine the homotopy groups of some $L_2$-localized finite spectra relating to $V(1)$. We further show some of the non-trivial differentials on elements relating so-called $\beta$-elements in the Adams-Novikov spectral sequence for $\pi _*(S^0)$.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- V. Gorbounov, S. Siegel and P. Symonds, The cohomology of the Morava stabilizer group $S_2$ at the prime 3, preprint.
- H-W. Henn, On the mod $p$ cohomology of profinite groups of positive $p$ rank, preprint.
- M. J. Hopkins and B. H. Gross, The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 76–86. MR 1217353, DOI 10.1090/S0273-0979-1994-00438-0
- Mark Mahowald, The order of the image of the $J$-homomorphisms, Bull. Amer. Math. Soc. 76 (1970), 1310–1313. MR 270369, DOI 10.1090/S0002-9904-1970-12656-8
- Mark Mahowald, Description homotopy of the elements in the image of the $J$-homomorphism, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 255–263. MR 0370577
- Mark Mahowald, The image of $J$ in the $EHP$ sequence, Ann. of Math. (2) 116 (1982), no. 1, 65–112. MR 662118, DOI 10.2307/2007048
- M. Mahowald, D. Ravenel and P. Shick, The $v_2$-periodic homotopy of a certain Thom complex, preprint.
- Mark Mahowald and Katsumi Shimomura, The Adams-Novikov spectral sequence for the $L_2$ localization of a $v_2$ spectrum, Algebraic topology (Oaxtepec, 1991) Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp. 237–250. MR 1224918, DOI 10.1090/conm/146/01226
- Haynes R. Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no. 3, 287–312. MR 604321, DOI 10.1016/0022-4049(81)90064-5
- Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no. 3, 469–516. MR 458423, DOI 10.2307/1971064
- Shichirô Oka, The stable homotopy groups of spheres. II, Hiroshima Math. J. 2 (1972), 99–161. MR 322865
- Shichirô Oka and Katsumi Shimomura, On products of the $\beta$-elements in the stable homotopy of spheres, Hiroshima Math. J. 12 (1982), no. 3, 611–626. MR 676562
- Shichirô Oka and Hirosi Toda, $3$-primary $\beta$-family in stable homotopy, Hiroshima Math. J. 5 (1975), no. 3, 447–460. MR 385853
- S. Pemmaraju, private communication.
- Douglas C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), no. 3, 287–297. MR 431168, DOI 10.1007/BF01488970
- Douglas C. Ravenel, The non-existence of odd primary Arf invariant elements in stable homotopy, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 3, 429–443. MR 474291, DOI 10.1017/S0305004100054712
- Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414. MR 737778, DOI 10.2307/2374308
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Douglas C. Ravenel, Progress report on the telescope conjecture, Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990) London Math. Soc. Lecture Note Ser., vol. 176, Cambridge Univ. Press, Cambridge, 1992, pp. 1–21. MR 1232195, DOI 10.1017/CBO9780511526312.007
- Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. MR 1192553
- K. Shimomura, 3-primary $\beta$-family in stable homotopy of a finite spectrum, Hiroshima Math. J. 26 (1996), 341–349.
- Katsumi Shimomura and Atsuko Yabe, The homotopy groups $\pi _*(L_2S^0)$, Topology 34 (1995), no. 2, 261–289. MR 1318877, DOI 10.1016/0040-9383(94)00032-G
- Hirosi Toda, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839–842. MR 230310
- Hirosi Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53–65. MR 271933, DOI 10.1016/0040-9383(71)90017-6
- Hirosi Toda, Algebra of stable homotopy of $Z_{p}$-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197–251. MR 293631, DOI 10.1215/kjm/1250523647
- N. Yagita, Small subalgebras of Steenrod and Morava stabilizer algebras, preprint.
- Raphael Zahler, The Adams-Novikov spectral sequence for the spheres, Ann. of Math. (2) 96 (1972), 480–504. MR 319197, DOI 10.2307/1970821
Bibliographic Information
- Katsumi Shimomura
- Affiliation: Faculty of Education, Tottori University, Tottori, 680, Japan
- Email: katsumi@fed.tottori-u.ac.jp
- Received by editor(s): October 31, 1995
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1821-1850
- MSC (1991): Primary 55Q45, 55Q10, 55Q52
- DOI: https://doi.org/10.1090/S0002-9947-97-01710-8
- MathSciNet review: 1370651