Boundary value maps, Szegö maps and intertwining operators
HTML articles powered by AMS MathViewer
- by L. Barchini
- Trans. Amer. Math. Soc. 349 (1997), 1877-1900
- DOI: https://doi.org/10.1090/S0002-9947-97-01834-5
- PDF | Request permission
Abstract:
We consider one series of unitarizable representations, the cohomological induced modules $A_{\mathfrak {q}}(\lambda )$ with dominant regular infinitesimal character. The minimal $K$-type $(\tau , V)$ of $A_{\mathfrak {q}}(\lambda )$ determines a homogeneous vector bundle $V_{\tau } \longrightarrow G/K$. The derived functor modules can be realized on the solution space of a first order differential operator $\mathcal {D}_{\mathfrak {l}}^{\lambda }$ on $V_{\tau }$. Barchini, Knapp and Zierau gave an explicit integral map $\mathcal {S}$ from the derived functor module, realized in the Langlands classification, into the space of smooth sections of the vector bundle $V_{\tau } \longrightarrow G/K$. In this paper we study the asymptotic behavior of elements in the image of $\mathcal {S}$. We obtain a factorization of the standard intertwining opeartors into the composition of the Szegö map $\mathcal {S}$ and a passage to boundary values.References
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Carl Herz and Roger Rigelhof (eds.), 1980 Seminar on Harmonic Analysis, CMS Conference Proceedings, vol. 1, American Mathematical Society, Providence, R.I.; for the Canadian Mathematical Society, Ottawa, Ont., 1981. MR 670090
- B. E. Blank, Knapp-Wallach Szegő integrals and generalized principal series representations: the parabolic rank one case, J. Funct. Anal. 60 (1985), no. 2, 127–145. MR 777234, DOI 10.1016/0022-1236(85)90048-5
- Brian Blank, Boundary behavior of limits of discrete series representations of real rank one semisimple groups, Pacific J. Math. 122 (1986), no. 2, 299–318. MR 831115, DOI 10.2140/pjm.1986.122.299
- B. E. Blank, Knapp-Wallach Szegő integrals. II. The higher parabolic rank case, Trans. Amer. Math. Soc. 300 (1987), no. 1, 49–59. MR 871664, DOI 10.1090/S0002-9947-1987-0871664-1
- L. Barchini, A. W. Knapp, and R. Zierau, Intertwining operators into Dolbeault cohomology representations, J. Funct. Anal. 107 (1992), no. 2, 302–341. MR 1172027, DOI 10.1016/0022-1236(92)90110-5
- L. Barchini, Szegő mappings, harmonic forms, and Dolbeault cohomology, J. Funct. Anal. 118 (1993), no. 2, 351–406. MR 1250267, DOI 10.1006/jfan.1993.1148
- L. Barchini, Szegő kernels associated with Zuckerman modules, J. Funct. Anal. 131 (1995), no. 1, 145–182. MR 1343163, DOI 10.1006/jfan.1995.1086
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- W. Casselman, The differential equations satisfied by matrix coefficients, manuscript (1975).
- J. E. Gilbert, P. A. Tomas, R. A. Kunze, and R. J. Stanton, Higher gradients and representations of Lie groups, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 416–436. MR 730082
- Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Functional Analysis 19 (1975), 104–204. MR 0399356, DOI 10.1016/0022-1236(75)90034-8
- Harish-Chandra, Harmonic analysis on real reductive groups. II. Wavepackets in the Schwartz space, Invent. Math. 36 (1976), 1–55. MR 439993, DOI 10.1007/BF01390004
- R. Hotta and R. Parthasarathy, Multiplicity formulae for discrete series, Invent. Math. 26 (1974), 133–178. MR 348041, DOI 10.1007/BF01435692
- M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Ōshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), no. 1, 1–39. MR 485861, DOI 10.2307/1971253
- Takeshi Kawazoe, On a global realization of a discrete series for $\textrm {SU}(n,1)$ as applications of Szegő operator and limits of discrete series, Tokyo J. Math. 12 (1989), no. 2, 429–455. MR 1030504, DOI 10.3836/tjm/1270133190
- A. W. Knapp and K. Okamoto, Limits of holomorphic discrete series, J. Functional Analysis 9 (1972), 375–409. MR 0299726, DOI 10.1016/0022-1236(72)90017-1
- A. W. Knapp, A Szegő kernel for discrete series, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 99–104. MR 0437682
- A. W. Knapp and N. R. Wallach, Szegö kernels associated with discrete series, Invent. Math. 34 (1976), no. 3, 163–200. MR 419686, DOI 10.1007/BF01403066
- A. W. Knapp, Commutativity of intertwining operators for semisimple groups, Compositio Math. 46 (1982), no. 1, 33–84. MR 660154
- A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups. II, Invent. Math. 60 (1980), no. 1, 9–84. MR 582703, DOI 10.1007/BF01389898
- A. W. Knapp and Gregg J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. (2) 116 (1982), no. 2, 389–455. MR 672840, DOI 10.2307/2007066
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- Hisayosi Matumoto, Cohomological Hardy space for $\textrm {SU}(2,2)$, Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 469–497. MR 1039848, DOI 10.2969/aspm/01410469
- Hisaichi Midorikawa, On certain irreducible representations for the real rank one classical groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 435–459. MR 364555
- Dragan Miličić, Asymptotic behaviour of matrix coefficients of the discrete series, Duke Math. J. 44 (1977), no. 1, 59–88. MR 430164
- Wilfried Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 223–286. Dissertation, University of California, Berkeley, CA, 1967. MR 1011899, DOI 10.1090/surv/031/05
- Reiji Takahashi, Sur les fonctions sphériques et la formule de Plancherel dans le groupe hyperbolique, Jpn. J. Math. 31 (1961), 55–90 (French). MR 152835, DOI 10.4099/jjm1924.31.0_{5}5
- David A. Vogan Jr. and Gregg J. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), no. 1, 51–90. MR 762307
- Nolan R. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 287–369. MR 727854, DOI 10.1007/BFb0071436
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- Nolan R. Wallach, Real reductive groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1992. MR 1170566
- Hon-Wai Wong, Dolbeault cohomological realization of Zuckerman modules associated with finite rank representations, J. Funct. Anal. 129 (1995), no. 2, 428–454. MR 1327186, DOI 10.1006/jfan.1995.1058
Bibliographic Information
- L. Barchini
- Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
- Address at time of publication: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- Email: leticiz@math.okstate.edu
- Received by editor(s): February 17, 1995
- Received by editor(s) in revised form: October 9, 1995
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1877-1900
- MSC (1991): Primary 22C05, 22E45, 22E46
- DOI: https://doi.org/10.1090/S0002-9947-97-01834-5
- MathSciNet review: 1401761