$C^*$-extreme points in the generalised state spaces of a $C^*$-algebra
HTML articles powered by AMS MathViewer
- by Douglas R. Farenick and Phillip B. Morenz
- Trans. Amer. Math. Soc. 349 (1997), 1725-1748
- DOI: https://doi.org/10.1090/S0002-9947-97-01877-1
- PDF | Request permission
Abstract:
In this paper we study the space $S_{H}(A)$ of unital completely positive linear maps from a $C^{*}$-algebra $A$ to the algebra $B(H)$ of continuous linear operators on a complex Hilbert space $H$. The state space of $A$, in this notation, is $S_{\mathbb {C}}(A)$. The main focus of our study concerns noncommutative convexity. Specifically, we examine the $C^{*}$-extreme points of the $C^{*}$-convex space $S_{H}(A)$. General properties of $C^{*}$-extreme points are discussed and a complete description of the set of $C^{*}$-extreme points is given in each of the following cases: (i) the cases $S_{{\mathbb {C}}^{2}}(A)$, where $A$ is arbitrary ; (ii) the cases $S_{{\mathbb {C}}^{r}}(A)$, where $A$ is commutative; (iii) the cases $S_{{\mathbb {C}}^{r}}(M_{n})$, where $M_{n}$ is the $C^{*}$-algebra of $n\times n$ complex matrices. An analogue of the Krein-Milman theorem will also be established.References
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- William Arveson, Subalgebras of $C^{\ast }$-algebras. II, Acta Math. 128 (1972), no. 3-4, 271–308. MR 394232, DOI 10.1007/BF02392166
- Rajarama Bhat, V. Pati, and V. S. Sunder, On some convex sets and their extreme points, Math. Ann. 296 (1993), no. 4, 637–648. MR 1233488, DOI 10.1007/BF01445126
- John Bunce and Norberto Salinas, Completely positive maps on $C^*$-algebras and the left matricial spectra of an operator, Duke Math. J. 43 (1976), no. 4, 747–774. MR 430793
- Man Duen Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975), 285–290. MR 376726, DOI 10.1016/0024-3795(75)90075-0
- E.G. Effros and S. Winkler, Matrix convexity: operator analogues of the bipolar and Hahn-Banach theorems, preprint, 1995.
- D. R. Farenick, $C^*$-convexity and matricial ranges, Canad. J. Math. 44 (1992), no. 2, 280–297. MR 1162344, DOI 10.4153/CJM-1992-019-1
- D. R. Farenick and Phillip B. Morenz, $C^\ast$-extreme points of some compact $C^\ast$-convex sets, Proc. Amer. Math. Soc. 118 (1993), no. 3, 765–775. MR 1139466, DOI 10.1090/S0002-9939-1993-1139466-7
- Ichiro Fujimoto, $\textrm {CP}$-duality for $C^\ast$- and $W^\ast$-algebras, J. Operator Theory 30 (1993), no. 2, 201–215. MR 1305504
- Alan Hopenwasser, Robert L. Moore, and V. I. Paulsen, $C^{\ast }$-extreme points, Trans. Amer. Math. Soc. 266 (1981), no. 1, 291–307. MR 613797, DOI 10.1090/S0002-9947-1981-0613797-5
- L. J. Landau and R. F. Streater, On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras, Linear Algebra Appl. 193 (1993), 107–127. MR 1240275, DOI 10.1016/0024-3795(93)90274-R
- Richard I. Loebl, A remark on unitary orbits, Bull. Inst. Math. Acad. Sinica 7 (1979), no. 4, 401–407. MR 558249
- Richard I. Loebl and Vern I. Paulsen, Some remarks on $C^{\ast }$-convexity, Linear Algebra Appl. 35 (1981), 63–78. MR 599846, DOI 10.1016/0024-3795(81)90266-4
- Phillip B. Morenz, The structure of $C^\ast$-convex sets, Canad. J. Math. 46 (1994), no. 5, 1007–1026. MR 1295129, DOI 10.4153/CJM-1994-058-0
- R. R. Smith and J. D. Ward, The geometric structure of generalized state spaces, J. Functional Analysis 40 (1981), no. 2, 170–184. MR 609440, DOI 10.1016/0022-1236(81)90066-5
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Erling Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233–278. MR 156216, DOI 10.1007/BF02391860
- Sze-Kai Tsui, Extreme $n$-positive linear maps, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 123–131. MR 1200191, DOI 10.1017/S0013091500005939
- Sze-Kai Tsui, Completely positive module maps and completely positive extreme maps, Proc. Amer. Math. Soc. 124 (1996), no. 2, 437–445. MR 1301050, DOI 10.1090/S0002-9939-96-03161-9
Bibliographic Information
- Douglas R. Farenick
- Affiliation: Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Email: farenick@math.uregina.ca
- Phillip B. Morenz
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Address at time of publication: Citadel Investment Group, 225 West Washington, Chicago, Illinois 60606
- Email: pmorenz@wfg.com
- Received by editor(s): November 17, 1994
- Additional Notes: This work is supported in part by The Natural Sciences and Engineering Research Council of Canada through a research grant (Farenick) and a postdoctoral fellowship (Morenz).
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 1725-1748
- MSC (1991): Primary 46L05; Secondary 46L30
- DOI: https://doi.org/10.1090/S0002-9947-97-01877-1
- MathSciNet review: 1407488