Proximity inequalities and bounds for the degree of invariant curves by foliations of $\mathbb {P}_{\mathbb {C}}^2$
HTML articles powered by AMS MathViewer
- by Antonio Campillo and Manuel M. Carnicer
- Trans. Amer. Math. Soc. 349 (1997), 2211-2228
- DOI: https://doi.org/10.1090/S0002-9947-97-01898-9
- PDF | Request permission
Abstract:
In this paper we prove that if $C$ is a reduced curve which is invariant by a foliation $\mathcal F$ in the complex projective plane then one has $\partial ^{\underline {\circ }} C\leq \partial ^{\underline {\circ }} \mathcal F+2+a$ where $a$ is an integer obtained from a concrete problem of imposing singularities to projective plane curves. If $\mathcal F$ is nondicritical or if $C$ has only nodes as singularities, then one gets $a=0$ and we recover known bounds. We also prove proximity formulae for foliations and we use these formulae to give relations between local invariants of the curve and the foliation.References
- César Camacho and Paulo Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2) 115 (1982), no. 3, 579–595. MR 657239, DOI 10.2307/2007013
- César Camacho, Alcides Lins Neto, and Paulo Sad, Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geom. 20 (1984), no. 1, 143–174. MR 772129
- Antonio Campillo, Gérard Gonzalez-Sprinberg, and Monique Lejeune-Jalabert, Enriques diagrams, resolutions and toric clusters, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 329–334 (English, with English and French summaries). MR 1320380
- F. Cano, Dicriticalness of a singular foliation, Holomorphic dynamics (Mexico, 1986) Lecture Notes in Math., vol. 1345, Springer, Berlin, 1988, pp. 73–94. MR 980953, DOI 10.1007/BFb0081396
- Manuel M. Carnicer, The Poincaré problem in the nondicritical case, Ann. of Math. (2) 140 (1994), no. 2, 289–294. MR 1298714, DOI 10.2307/2118601
- E. Casas-Alvero, Infinitely near imposed singularities and singularities of polar curves, Math. Ann. 287 (1990), no. 3, 429–454. MR 1060685, DOI 10.1007/BF01446904
- D. Cerveau and A. Lins Neto, Holomorphic foliations in $\textbf {C}\textrm {P}(2)$ having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 883–903 (English, with French summary). MR 1150571, DOI 10.5802/aif.1278
- D. Cerveau and J.-F. Mattei, Formes intégrables holomorphes singulières, Astérisque, vol. 97, Société Mathématique de France, Paris, 1982 (French). With an English summary. MR 704017
- H. Dulac. Recherches sur les points singuliers des équations différentielles. Journal de l’Ecole Polytechnique, $2^e$ série, 9:1–125, 1904.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Joseph Lipman, Adjoints and polars of simple complete ideals in two-dimensional regular local rings, Bull. Soc. Math. Belg. Sér. A 45 (1993), no. 1-2, 223–244. Third Week on Algebra and Algebraic Geometry (SAGA III) (Puerto de la Cruz, 1992). MR 1316244
- Joseph Lipman, Proximity inequalities for complete ideals in two-dimensional regular local rings, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 293–306. MR 1266187, DOI 10.1090/conm/159/01512
- H. Poincaré. Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (I and II). Rendiconti del circolo matematico di Palermo, 5 and 11:161–191 and 193–239, 1891 and 1897.
- A. Seidenberg, Reduction of singularities of the differential equation $A\,dy=B\,dx$, Amer. J. Math. 90 (1968), 248–269. MR 220710, DOI 10.2307/2373435
- O. Zariski. Studies in equisingularity I. American Journal of Math., 87:507–535, 1965.
Bibliographic Information
- Antonio Campillo
- Affiliation: Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid. Spain
- Address at time of publication: Laboratoire de Mathematiques Emile Picard, UMR CNRS 5580, Univ. Paul Sabatier, U.F.R.-M.I.G., 118 Route de Narbonne, 31062 Toulouse Cedex, France
- Email: campillo@cpd.uva.es
- Manuel M. Carnicer
- Affiliation: Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid. Spain
- Address at time of publication: Laboratoire de Mathematiques Emile Picard, UMR CNRS 5580, Univ. Paul Sabatier, U.F.R.-M.I.G., 118 Route de Narbonne, 31062 Toulouse Cedex, France
- Email: mcarnicer@cpd.uva.es
- Received by editor(s): August 22, 1995
- Additional Notes: The first author was partially supported by the D.G.I.C. y T. (PB-91-0210-C02-01); the second author was partially supported by the D.G.I.C. y T. (PB-91-0195)
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 2211-2228
- MSC (1991): Primary 32L30
- DOI: https://doi.org/10.1090/S0002-9947-97-01898-9
- MathSciNet review: 1407696