Second variation of superminimal surfaces into self-dual Einstein four-manifolds
HTML articles powered by AMS MathViewer
- by Sebastián Montiel and Francisco Urbano
- Trans. Amer. Math. Soc. 349 (1997), 2253-2269
- DOI: https://doi.org/10.1090/S0002-9947-97-01933-8
- PDF | Request permission
Abstract:
The index of a compact orientable superminimal surface of a self-dual Einstein four-manifold $M$ with positive scalar curvature is computed in terms of its genus and area. Also a lower bound of its nullity is obtained. Applications to the cases $M=\mathbb {S}^4$ and $M=\mathbb {C}\mathbb {P}^2$ are given, characterizing the standard Veronese immersions and their twistor deformations as those with lowest index.References
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- João Lucas Marquês Barbosa, On minimal immersions of $S^{2}$ into $S^{2m}$, Trans. Amer. Math. Soc. 210 (1975), 75–106. MR 375166, DOI 10.1090/S0002-9947-1975-0375166-2
- Lionel Bérard-Bergery, Marcel Berger, and Christian Houzel (eds.), Géométrie riemannienne en dimension 4, Textes Mathématiques [Mathematical Texts], vol. 3, CEDIC, Paris, 1981 (French). Papers from the Arthur Besse seminar held at the Université de Paris VII, Paris, 1978/1979. MR 769127
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Robert L. Bryant, Conformal and minimal immersions of compact surfaces into the $4$-sphere, J. Differential Geometry 17 (1982), no. 3, 455–473. MR 679067
- M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969), 379–392. MR 266084, DOI 10.4310/jdg/1214429060
- Eugenio Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry 1 (1967), 111–125. MR 233294
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Shiing Shen Chern and Jon Gordon Wolfson, Minimal surfaces by moving frames, Amer. J. Math. 105 (1983), no. 1, 59–83. MR 692106, DOI 10.2307/2374381
- Norio Ejiri, The index of minimal immersions of $S^{2}$ into $S^{2n}$, Math. Z. 184 (1983), no. 1, 127–132. MR 711733, DOI 10.1007/BF01162011
- J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 4, 589–640 (1986). MR 848842
- Jost-Hinrich Eschenburg, Irwen Válle Guadalupe, and Renato de Azevedo Tribuzy, The fundamental equations of minimal surfaces in $\textbf {C}\textrm {P}^2$, Math. Ann. 270 (1985), no. 4, 571–598. MR 776173, DOI 10.1007/BF01455305
- D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. 1, 121–132. MR 808112, DOI 10.1007/BF01394782
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- Thomas Friedrich, On surfaces in four-spaces, Ann. Global Anal. Geom. 2 (1984), no. 3, 257–287. MR 777909, DOI 10.1007/BF01876417
- Th. Friedrich and R. Grunewald, On Einstein metrics on the twistor space of a four-dimensional Riemannian manifold, Math. Nachr. 123 (1985), 55–60. MR 809333, DOI 10.1002/mana.19851230106
- Théorie des variétés minimales et applications, Société Mathématique de France, Paris, 1988 (French). Minimal submanifolds; Papers from the seminar held at the École Polytechnique, Palaiseau, October 1983–June 1984; Astérisque No. 154-155 (1987). MR 955056
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), no. 1, 133–150. MR 623721, DOI 10.1112/plms/s3-43.1.133
- Motoko Kotani, Connectedness of the space of minimal $2$-spheres in $S^{2m}(1)$, Proc. Amer. Math. Soc. 120 (1994), no. 3, 803–810. MR 1169040, DOI 10.1090/S0002-9939-1994-1169040-9
- J.-L. Koszul and B. Malgrange, Sur certaines structures fibrées complexes, Arch. Math. (Basel) 9 (1958), 102–109 (French). MR 131882, DOI 10.1007/BF02287068
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Bonaventure Loo, The space of harmonic maps of $S^2$ into $S^4$, Trans. Amer. Math. Soc. 313 (1989), no. 1, 81–102. MR 962283, DOI 10.1090/S0002-9947-1989-0962283-9
- Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227. MR 924677, DOI 10.2307/1971420
- Mario J. Micallef and Jon G. Wolfson, The second variation of area of minimal surfaces in four-manifolds, Math. Ann. 295 (1993), no. 2, 245–267. MR 1202392, DOI 10.1007/BF01444887
- Sebastián Montiel and Antonio Ros, Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990) Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 147–174. MR 1178529, DOI 10.1007/BFb0083639
- Yong-Geun Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), no. 2, 501–519. MR 1062973, DOI 10.1007/BF01231513
- R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, DOI 10.2307/1971247
- Takao Sasai, The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations, Tohoku Math. J. (2) 36 (1984), no. 1, 17–24. MR 733615, DOI 10.2748/tmj/1178228899
- J. Simons, Minimal varieties in Riemaniann manifolds, Ann. of Math., 88(1968), 62–105.
- Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. MR 577360, DOI 10.1007/BF01390043
- Francisco Urbano, Minimal surfaces with low index in the three-dimensional sphere, Proc. Amer. Math. Soc. 108 (1990), no. 4, 989–992. MR 1007516, DOI 10.1090/S0002-9939-1990-1007516-1
Bibliographic Information
- Sebastián Montiel
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, E-18071 Granada, Spain
- Email: smontiel@goliat.ugr.es
- Francisco Urbano
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, E-18071 Granada, Spain
- Email: furbano@goliat.ugr.es
- Received by editor(s): October 10, 1994
- Received by editor(s) in revised form: September 15, 1995
- Additional Notes: Both authors partially supported by DGICYT grant PB94–0796
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 2253-2269
- MSC (1991): Primary 53A10; Secondary 49Q20
- DOI: https://doi.org/10.1090/S0002-9947-97-01933-8
- MathSciNet review: 1422905