Unramified cohomology and Witt groups of anisotropic Pfister quadrics
HTML articles powered by AMS MathViewer
- by R. Sujatha
- Trans. Amer. Math. Soc. 349 (1997), 2341-2358
- DOI: https://doi.org/10.1090/S0002-9947-97-01940-5
- PDF | Request permission
Abstract:
The unramified Witt group of an anisotropic conic over a field $k$, with $char~k \neq 2$, defined by the form $\langle 1,-a,-b\rangle$ is known to be a quotient of the Witt group $W(k)$ of $k$ and isomorphic to $W( {k})/\langle 1,-a,-b,ab \rangle W( {k})$. We compute the unramified cohomology group $H^{3}_{nr}{k({C})}$, where $C$ is the three dimensional anisotropic quadric defined by the quadratic form $\langle 1,-a,-b,ab,-c\rangle$ over $k$. We use these computations to study the unramified Witt group of $C$.References
- Jón Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Algebra 36 (1975), no. 3, 448–491 (French). MR 389761, DOI 10.1016/0021-8693(75)90145-3
- Jón Kr. Arason, A proof of Merkurjev’s theorem, Quadratic and Hermitian forms (Hamilton, Ont., 1983) CMS Conf. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 1984, pp. 121–130. MR 776449
- Jón Kr. Arason, Richard Elman, and Bill Jacob, The graded Witt ring and Galois cohomology. I, Quadratic and Hermitian forms (Hamilton, Ont., 1983) CMS Conf. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 1984, pp. 17–50. MR 776446
- Jón Kr. Arason, Richard Elman, and Bill Jacob, Fields of cohomological $2$-dimension three, Math. Ann. 274 (1986), no. 4, 649–657. MR 848510, DOI 10.1007/BF01458600
- Jón Kr. Arason, Richard Elman, and Bill Jacob, The graded Witt ring and Galois cohomology. II, Trans. Amer. Math. Soc. 314 (1989), no. 2, 745–780. MR 964897, DOI 10.1090/S0002-9947-1989-0964897-9
- Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191, DOI 10.24033/asens.1266
- J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 1–64. MR 1327280, DOI 10.1090/pspum/058.1/1327280
- Jean-Louis Colliot-Thélène, Cycles algébriques de torsion et $K$-théorie algébrique, Arithmetic algebraic geometry (Trento, 1991) Lecture Notes in Math., vol. 1553, Springer, Berlin, 1993, pp. 1–49 (French). MR 1338859, DOI 10.1007/BFb0084728
- Jean-Louis Colliot-Thélène and Manuel Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford, Invent. Math. 97 (1989), no. 1, 141–158 (French). MR 999316, DOI 10.1007/BF01850658
- J.-L. Colliot-Thélène and R. Sujatha, Unramified Witt groups of real anisotropic quadrics, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 127–147. MR 1327294, DOI 10.1090/pspum/058.2/1327294
- Richard Elman and T. Y. Lam, Pfister forms and $K$-theory of fields, J. Algebra 23 (1972), 181–213. MR 302739, DOI 10.1016/0021-8693(72)90054-3
- R. Elman, T. Y. Lam, and A. R. Wadsworth, Function fields of Pfister forms, Invent. Math. 51 (1979), no. 1, 61–75. MR 524277, DOI 10.1007/BF01389912
- Bill Jacob and Markus Rost, Degree four cohomological invariants for quadratic forms, Invent. Math. 96 (1989), no. 3, 551–570. MR 996554, DOI 10.1007/BF01393696
- Jannsen, U., Cohomological Hasse principles, Handwritten notes.
- Bruno Kahn, Lower $\scr H$-cohomology of higher-dimensional quadrics, Arch. Math. (Basel) 65 (1995), no. 3, 244–250. MR 1344022, DOI 10.1007/BF01195094
- N. A. Karpenko and A. S. Merkur′ev, Chow groups of projective quadrics, Algebra i Analiz 2 (1990), no. 3, 218–235 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 3, 655–671. MR 1073215
- Kazuya Kato, Milnor $K$-theory and the Chow group of zero cycles, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 241–253. MR 862638, DOI 10.1090/conm/055.1/862638
- A. S. Merkur′ev, On the norm residue symbol of degree $2$, Dokl. Akad. Nauk SSSR 261 (1981), no. 3, 542–547 (Russian). MR 638926
- A. S. Merkur′ev and A. A. Suslin, Norm residue homomorphism of degree three, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, 339–356 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 2, 349–367. MR 1062517
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- Manuel Ojanguren, The Witt group and the problem of Lüroth, Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice, Pisa, 1990. With an introduction by Inta Bertuccioni. MR 1077830
- R. Parimala, Witt groups of conics, elliptic, and hyperelliptic curves, J. Number Theory 28 (1988), no. 1, 69–93. MR 925609, DOI 10.1016/0022-314X(88)90120-5
- R. Parimala, Witt groups of affine three-folds, Duke Math. J. 57 (1988), no. 3, 947–954. MR 975129, DOI 10.1215/S0012-7094-88-05742-0
- Albrecht Pfister, Multiplikative quadratische Formen, Arch. Math. (Basel) 16 (1965), 363–370 (German). MR 184937, DOI 10.1007/BF01220043
- Wayne Raskind, Abelian class field theory of arithmetic schemes, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 85–187. MR 1327282, DOI 10.1090/pspum/058.1/1327282
- Rost, M., Hilbert Theorem 90 for $K_{3}$ for degree two extensions, preprint, Regensburg, 1986.
- Rost, M., Talk at the Ascona Conference on Quadratic Forms, 1991.
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
- A. A. Suslin, Torsion in $K_2$ of fields, $K$-Theory 1 (1987), no. 1, 5–29. MR 899915, DOI 10.1007/BF00533985
- M. Shyevski, The fifth invariant of quadratic forms, Algebra i Analiz 2 (1990), no. 1, 213–234 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 1, 179–198. MR 1049911
- Shyevski [Szyjewski], M., Algebraic K-theory and quadratic forms (in Russian), Dissertation, Leningrad State University (1989).
Bibliographic Information
- R. Sujatha
- Affiliation: Department of Mathematics, Ohio State University, 231 W 18th Avenue, Columbus, Ohio 43210; Permanent address: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India
- MR Author ID: 293023
- ORCID: 0000-0003-1221-0710
- Email: sujatha@math.tifr.res.in
- Received by editor(s): November 7, 1995
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 2341-2358
- MSC (1991): Primary 11E70; Secondary 13K05, 12G05
- DOI: https://doi.org/10.1090/S0002-9947-97-01940-5
- MathSciNet review: 1422911
Dedicated: Dedicated to my father on his sixtieth birthday