## Bloch constants of bounded symmetric domains

HTML articles powered by AMS MathViewer

- by Genkai Zhang PDF
- Trans. Amer. Math. Soc.
**349**(1997), 2941-2949 Request permission

## Abstract:

Let $D_{1}$ and $D_{2}$ be two irreducible bounded symmetric domains in the complex spaces $V_{1}$ and $V_{2}$ respectively. Let $E$ be the Euclidean metric on $V_{2}$ and $h$ the Bergman metric on $V_{1}$. The Bloch constant $b(D_{1}, D_{2})$ is defined to be the supremum of $E(f^{\prime }(z)x, f^{\prime }(z)x)^{\frac {1}{2}}/h_{z}(x, x)^{1/2}$, taken over all the holomorphic functions $f: D_{1}\to D_{2}$ and $z\in D_{1}$, and nonzero vectors $x\in V_{1}$. We find the constants for all the irreducible bounded symmetric domains $D_{1}$ and $D_{2}$. As a special case we answer an open question of Cohen and Colonna.## References

- Joel M. Cohen and Flavia Colonna,
*Bounded holomorphic functions on bounded symmetric domains*, Trans. Amer. Math. Soc.**343**(1994), no. 1, 135–156. MR**1176085**, DOI 10.1090/S0002-9947-1994-1176085-6 - Sigurdur Helgason,
*Differential geometry, Lie groups, and symmetric spaces*, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**514561** - L. K. Hua,
*Harmonic analysis of functions of several complex variables in the classical domains*, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR**0171936**, DOI 10.1090/mmono/006 - O. Loos,
*Bounded Symmetric Domains and Jordan Pairs*, University of California, Irvine, 1977. - Ottmar Loos,
*Jordan pairs*, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-New York, 1975. MR**0444721**, DOI 10.1007/BFb0080843 - Walter Rudin,
*Function theory in the unit ball of $\textbf {C}^{n}$*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR**601594**, DOI 10.1007/978-1-4613-8098-6 - Ichirô Satake,
*Algebraic structures of symmetric domains*, Kanô Memorial Lectures, vol. 4, Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., 1980. MR**591460** - Dunham Jackson,
*A class of orthogonal functions on plane curves*, Ann. of Math. (2)**40**(1939), 521–532. MR**80**, DOI 10.2307/1968936 - Joseph A. Wolf,
*Fine structure of Hermitian symmetric spaces*, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and App. Math., Vol. 8, Dekker, New York, 1972, pp. 271–357. MR**0404716** - Z. Yan,
*Extremal holomorphic mappings between a bounded symmetric domain and the unit ball*, preprint, Berkeley, 1993.

## Additional Information

**Genkai Zhang**- Affiliation: School of Mathematics, University of New South Wales, Kensington NSW 2033, Australia
- Address at time of publication: Department of Mathematics, University of Karlstad, S-651 88 Karlstad, Sweden
- Email: genkai.zhang@hks.se
- Received by editor(s): November 21, 1994
- Received by editor(s) in revised form: May 10, 1995
- Additional Notes: Research sponsored by the Australian Research Council
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**349**(1997), 2941-2949 - MSC (1991): Primary 32H02, 32M15
- DOI: https://doi.org/10.1090/S0002-9947-97-01518-3
- MathSciNet review: 1329540