Euler-Lagrange and Hamiltonian formalisms in dynamic optimization
HTML articles powered by AMS MathViewer
- by Alexander Ioffe
- Trans. Amer. Math. Soc. 349 (1997), 2871-2900
- DOI: https://doi.org/10.1090/S0002-9947-97-01795-9
- PDF | Request permission
Abstract:
We consider dynamic optimization problems for systems governed by differential inclusions. The main focus is on the structure of and interrelations between necessary optimality conditions stated in terms of Euler–Lagrange and Hamiltonian formalisms. The principal new results are: an extension of the recently discovered form of the Euler–Weierstrass condition to nonconvex valued differential inclusions, and a new Hamiltonian condition for convex valued inclusions. In both cases additional attention was given to weakening Lipschitz type requirements on the set–valued mapping. The central role of the Euler type condition is emphasized by showing that both the new Hamiltonian condition and the most general form of the Pontriagin maximum principle for equality constrained control systems are consequences of the Euler–Weierstrass condition. An example is given demonstrating that the new Hamiltonian condition is strictly stronger than the previously known one.References
- Jean-Pierre Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), no. 1, 87–111. MR 736641, DOI 10.1287/moor.9.1.87
- V. I. Blagodat⋅skikh, The maximum principle for differential inclusions, Trudy Mat. Inst. Steklov. 166 (1984), 23–43 (Russian). Modern problems of mathematics. Differential equations, mathematical analysis and their applications. MR 752166
- V. G. Boltjanskiĭ, The method of local cross sections in the theory of optimal processes. , Differencial′nye Uravnenija 4 (1968), 2166–2183 (Russian). MR 0242531
- Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, DOI 10.1090/S0002-9947-1975-0367131-6
- Frank H. Clarke, Necessary conditions for a general control problem, Calculus of variations and control theory (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; dedicated to Laurence Chisholm Young on the occasion of his 70th birthday), Publ. Math. Res. Center Univ. Wisconsin, No. 36, Academic Press, New York, 1976, pp. 257–278. MR 0638210
- Frank H. Clarke, The generalized problem of Bolza, SIAM J. Control Optim. 14 (1976), no. 4, 682–699. MR 412926, DOI 10.1137/0314044
- Frank H. Clarke, Extremal arcs and extended Hamiltonian systems, Trans. Amer. Math. Soc. 231 (1977), no. 2, 349–367. MR 442784, DOI 10.1090/S0002-9947-1977-0442784-4
- Frank H. Clarke, Optimal control and the true Hamiltonian, SIAM Rev. 21 (1979), no. 2, 157–166. MR 524510, DOI 10.1137/1021027
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Frank H. Clarke, Methods of dynamic and nonsmooth optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 57, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. MR 1085948, DOI 10.1137/1.9781611970142
- R. Correa, A. Jofré, and L. Thibault, Characterization of lower semicontinuous convex functions, Proc. Amer. Math. Soc. 116 (1992), no. 1, 67–72. MR 1126193, DOI 10.1090/S0002-9939-1992-1126193-4
- R. P. Fedorenko, The maximum principle for differential inclusions (necessity), Ž. Vyčisl. Mat i Mat. Fiz. 11 (1971), 885–893 (Russian). MR 300717
- Halina Frankowska, The maximum principle for an optimal solution to a differential inclusion with end points constraints, SIAM J. Control Optim. 25 (1987), no. 1, 145–157. MR 872456, DOI 10.1137/0325010
- Halina Frankowska, Contingent cones to reachable sets of control systems, SIAM J. Control Optim. 27 (1989), no. 1, 170–198. MR 980229, DOI 10.1137/0327010
- B. Ginsburg and A. Ioffe, The maximum principle in optimal control of systems governed by semilinear equations, Proceedings of the IMA Workshop on Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, B. Mordukhovich and H. Sussman, eds, IMA Vol. Math. Appl., 78, Springer, 1996, pp. 81–110.
- J.-B. Hiriart-Urruty, Extension of Lipschitz functions, J. Math. Anal. Appl. 77 (1980), no. 2, 539–554. MR 593233, DOI 10.1016/0022-247X(80)90246-2
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Alexandre D. Ioffe, Sous-différentielles approchées de fonctions numériques, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 14, 675–678 (French, with English summary). MR 618883
- A. D. Ioffe, Single-valued representation of set-valued mappings. II. Application to differential inclusions, SIAM J. Control Optim. 21 (1983), no. 4, 641–651. MR 704479, DOI 10.1137/0321038
- A. D. Ioffe, Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps, Nonlinear Anal. 8 (1984), no. 5, 517–539. MR 741606, DOI 10.1016/0362-546X(84)90091-9
- A. D. Ioffe, Approximate subdifferentials and applications. I. The finite-dimensional theory, Trans. Amer. Math. Soc. 281 (1984), no. 1, 389–416. MR 719677, DOI 10.1090/S0002-9947-1984-0719677-1
- A. D. Ioffe, Necessary conditions in nonsmooth optimization, Math. Oper. Res. 9 (1984), no. 2, 159–189. MR 742254, DOI 10.1287/moor.9.2.159
- A. D. Ioffe, Proximal analysis and approximate subdifferentials, J. London Math. Soc. (2) 41 (1990), no. 1, 175–192. MR 1063554, DOI 10.1112/jlms/s2-41.1.175
- A. Ioffe, Nonsmooth subdifferentials: their calculus and applications, Proceedings of the 1st Congress of Nonlinear Analysts, de Gruyter, Berlin, 1996, pp. 2299–2310.
- A. D. Ioffe and R. T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems, Calc. Var. Partial Differential Equations 4 (1996), no. 1, 59–87. MR 1379193, DOI 10.1007/BF01322309
- A. D. Ioffe and V. M. Tikhomirov, Teoriya èkstremal′nykh zadach, Seriya “Nelineĭnyĭ Analiz i ego Prilozheniya”. [Series in Nonlinear Analysis and its Applications], Izdat. “Nauka”, Moscow, 1974 (Russian). MR 0410502
- A. Jourani and L. Thibault, Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1255–1268. MR 1290719, DOI 10.1090/S0002-9947-1995-1290719-8
- Barbara Kaśkosz and Stanisław Łojasiewicz Jr., A maximum principle for generalized control systems, Nonlinear Anal. 9 (1985), no. 2, 109–130. MR 777983, DOI 10.1016/0362-546X(85)90067-7
- Barbara Kaśkosz and Stanisław Łojasiewicz Jr., Lagrange-type extremal trajectories in differential inclusions, Systems Control Lett. 19 (1992), no. 3, 241–247. MR 1180513, DOI 10.1016/0167-6911(92)90119-D
- Philip D. Loewen and R. T. Rockafellar, The adjoint arc in nonsmooth optimization, Trans. Amer. Math. Soc. 325 (1991), no. 1, 39–72. MR 1036004, DOI 10.1090/S0002-9947-1991-1036004-7
- Philip D. Loewen and R. T. Rockafellar, Optimal control of unbounded differential inclusions, SIAM J. Control Optim. 32 (1994), no. 2, 442–470. MR 1261148, DOI 10.1137/S0363012991217494
- P. Loewen and R. T. Rockafellar, New necessary conditions for generalized problem of Bolza, SIAM J. Control Optimization 34 (1996), 1496–1511.
- P. D. Loewen and R. B. Vinter, Pontriagin–type necessary conditions for differential inclusion problem, System and Control Letters 9 (1987), 263–265.
- S. Łojasiewicz, Lipschitz selectors of orientor fields
- S. Łojasiewicz, Local controllability of parametrized differential equations, in preparation.
- B. Sh. Mordukhovich, Maximum principle in the problem of time optimal response with nonsmooth constraints, Prikl. Mat. Meh. 40 (1976), no. 6, 1014–1023 (Russian); English transl., J. Appl. Math. Mech. 40 (1976), no. 6, 960–969 (1977). MR 0487669, DOI 10.1016/0021-8928(76)90136-2
- B. Š. Morduhovič, Metric approximations and necessary conditions for optimality for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR 254 (1980), no. 5, 1072–1076 (Russian). MR 592682
- B. Sh. Mordukhovich, Metody approksimatsiĭ v zadachakh optimizatsii i upravleniya, “Nauka”, Moscow, 1988 (Russian). MR 945143
- A. Ioffe, M. Marcus, and S. Reich (eds.), Optimization and nonlinear analysis, Pitman Research Notes in Mathematics Series, vol. 244, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. MR 1184627
- Boris Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc. 340 (1993), no. 1, 1–35. MR 1156300, DOI 10.1090/S0002-9947-1993-1156300-4
- Boris S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions, SIAM J. Control Optim. 33 (1995), no. 3, 882–915. MR 1327242, DOI 10.1137/S0363012993245665
- E. S. Polovinkin and G. V. Smirnov, An approach to differentiation of multivalued mappings, and necessary conditions for optimality of solutions of differential inclusions, Differentsial′nye Uravneniya 22 (1986), no. 6, 944–954, 1098–1099 (Russian). MR 849627
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683, DOI 10.1515/9781400873173
- R. Tyrrell Rockafellar, Generalized Hamiltonian equations for convex problems of Lagrange, Pacific J. Math. 33 (1970), 411–427. MR 276853, DOI 10.2140/pjm.1970.33.411
- R. T. Rockafellar, Existence and duality theorems for convex problems of Bolza, Trans. Amer. Math. Soc. 159 (1971), 1–40. MR 282283, DOI 10.1090/S0002-9947-1971-0282283-0
- R. Tyrrell Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Anal. 9 (1985), no. 8, 867–885. MR 799890, DOI 10.1016/0362-546X(85)90024-0
- R. T. Rockafellar, Dualization of subgradient conditions for optimality, Nonlinear Anal. 20 (1993), no. 6, 627–646. MR 1214732, DOI 10.1016/0362-546X(93)90024-M
- R. T. Rockafellar, Equivalent subgradient versions of Hamiltonian and Euler-Lagrange equations in variational analysis, SIAM J. Control Optim. 34 (1996), 1300–1314.
- G. V. Smirnov, Discrete approximations and optimal solutions of differential inclusions, Kibernetika (Kiev) 1 (1991), 76–79, 98, 135 (Russian, with English and Ukrainian summaries); English transl., Cybernetics 27 (1991), no. 1, 101–107. MR 1110730
- H. J. Sussmann, A strong version of the Łojasiewicz maximum principle, Optimal control of differential equations (Athens, OH, 1993) Lecture Notes in Pure and Appl. Math., vol. 160, Dekker, New York, 1994, pp. 293–309. MR 1289888
- R. Vinter and H. Zheng, The extended Euler–Lagrange condition for nonconvex variational problems, SIAM J. Control Optimization, to appear.
- J. Warga, Controllability, extremality, and abnormality in nonsmooth optimal control, J. Optim. Theory Appl. 41 (1983), no. 1, 239–260. MR 718047, DOI 10.1007/BF00934445
- Q. Zhu, Necessary optimality conditions for nonconvex differentiable inclusions with endpoint constraints, J. Differential Equations 124 (1996), 186–204.
Bibliographic Information
- Alexander Ioffe
- Affiliation: Department of Mathematics, The Technion, Haifa 32000, Israel
- MR Author ID: 91440
- Email: ioffe@math.technion.ac.il
- Received by editor(s): January 23, 1995
- Received by editor(s) in revised form: January 17, 1996
- Additional Notes: The research was supported by the USA–Israel BSF grant 90–00455, by the Fund of Promotion of Science at the Technion grant 100-954 and in later stages, by the NSF grant DMS 9404128
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 2871-2900
- MSC (1991): Primary 49K24, 49K15; Secondary 34A60, 34H05
- DOI: https://doi.org/10.1090/S0002-9947-97-01795-9
- MathSciNet review: 1389779