Symmetric Gibbs measures
HTML articles powered by AMS MathViewer
- by Karl Petersen and Klaus Schmidt
- Trans. Amer. Math. Soc. 349 (1997), 2775-2811
- DOI: https://doi.org/10.1090/S0002-9947-97-01934-X
- PDF | Request permission
Abstract:
We prove that certain Gibbs measures on subshifts of finite type are nonsingular and ergodic for certain countable equivalence relations, including the orbit relation of the adic transformation (the same as equality after a permutation of finitely many coordinates). The relations we consider are defined by cocycles taking values in groups, including some nonabelian ones. This generalizes (half of) the identification of the invariant ergodic probability measures for the Pascal adic transformation as exactly the Bernoulli measures—a version of de Finetti’s theorem. Generalizing the other half, we characterize the measures on subshifts of finite type that are invariant under both the adic and the shift as the Gibbs measures whose potential functions depend on only a single coordinate. There are connections with and implications for exchangeability, ratio limit theorems for transient Markov chains, interval splitting procedures, ‘canonical’ Gibbs states, and the triviality of remote sigma-fields finer than the usual tail field.References
- C. O. Acuna, Texture modeling using Gibbs distributions, Graphical Models and Image Processing 54 (1992), 210–222.
- David J. Aldous, Exchangeability and related topics, École d’été de probabilités de Saint-Flour, XIII—1983, Lecture Notes in Math., vol. 1117, Springer, Berlin, 1985, pp. 1–198. MR 883646, DOI 10.1007/BFb0099421
- Leslie K. Arnold, On $\sigma$-finite invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 85–97. MR 227362, DOI 10.1007/BF01850999
- David Blackwell and David Freedman, The tail $\sigma$-field of a Markov chain and a theorem of Orey, Ann. Math. Statist. 35 (1964), 1291–1295. MR 164375, DOI 10.1214/aoms/1177703284
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989, DOI 10.1007/BFb0081279
- Roger Butler and Klaus Schmidt, An information cocycle for groups of nonsingular transformations, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 3, 347–360. MR 787603, DOI 10.1007/BF00532739
- P. Diaconis and D. Freedman, de Finetti’s theorem for Markov chains, Ann. Probab. 8 (1980), no. 1, 115–130. MR 556418, DOI 10.1214/aop/1176994828
- P. Diaconis and D. Freedman, Partial exchangeability and sufficiency, Statistics: applications and new directions (Calcutta, 1981) Indian Statist. Inst., Calcutta, 1984, pp. 205–236. MR 786142
- E. B. Dynkin, Sufficient statistics and extreme points, Ann. Probab. 6 (1978), no. 5, 705–730. MR 0518321, DOI 10.1214/aop/1176995424
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- J. Feldman, C. E. Sutherland, and R. J. Zimmer, Subrelations of ergodic equivalence relations, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 239–269. MR 1007409, DOI 10.1017/S0143385700004958
- S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intelligence 6 (1984), 721–741.
- Hans-Otto Georgii, Canonical Gibbs states, their relation to Gibbs states, and applications to two-valued Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), no. 4, 277–300. MR 388581, DOI 10.1007/BF00535841
- Hans-Otto Georgii, Canonical Gibbs measures, Lecture Notes in Mathematics, vol. 760, Springer, Berlin, 1979. Some extensions of de Finetti’s representation theorem for interacting particle systems. MR 551621, DOI 10.1007/BFb0068557
- T. Giordano, I. Putnam and C. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51–111.
- L. A. Grigorenko, $\sigma$-algebra of symmetric events for a countable Markov chain, Teor. Veroyatnost. i Primenen. 24 (1979), no. 1, 198–204 (Russian, with English summary). MR 522254
- Arshag Hajian, Yuji Ito, and Shizuo Kakutani, Invariant measures and orbits of dissipative transformations, Advances in Math. 9 (1972), 52–65. MR 302860, DOI 10.1016/0001-8708(72)90029-1
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Thomas Höglund, Central limit theorems and statistical inference for finite Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 123–151. MR 373201, DOI 10.1007/BF00532560
- Richard Isaac, Generalized Hewitt-Savage theorems for strictly stationary processes, Proc. Amer. Math. Soc. 63 (1977), no. 2, 313–316. MR 501304, DOI 10.1090/S0002-9939-1977-0501304-1
- Richard Isaac, Note on a paper of J. L. Palacios: “A correction note on: ‘Generalized Hewitt-Savage theorems for strictly stationary processes’ [Proc. Amer. Math. Soc. 63 (1977), no. 2, 313–316; MR0501304 (58 #18695)] by Isaac” [ibid. 88 (1983), no. 1, 138–140; MR0691294 (86a:60054)], Proc. Amer. Math. Soc. 101 (1987), no. 3, 529. MR 908662, DOI 10.1090/S0002-9939-1987-0908662-0
- Shunji Ito, A construction of transversal flows for maximal Markov automorphisms, Tokyo J. Math. 1 (1978), no. 2, 305–324. MR 519199, DOI 10.3836/tjm/1270216501
- Shizuo Kakutani, A problem of equidistribution on the unit interval $[0,1]$, Measure theory (Proc. Conf., Oberwolfach, 1975) Lecture Notes in Math., Vol. 541, Springer, Berlin, 1976, pp. 369–375. MR 0457678
- Masasi Kowada, Spectral type of one-parameter group of unitary operators with transversal group, Nagoya Math. J. 32 (1968), 141–153. MR 230160, DOI 10.1017/S0027763000026623
- Masasi Kowada, The orbit-preserving transformation groups associated with a measurable flow, J. Math. Soc. Japan 24 (1972), 355–373. MR 306451, DOI 10.2969/jmsj/02430355
- Wolfgang Krieger, On the finitary isomorphisms of Markov shifts that have finite expected coding time, Z. Wahrsch. Verw. Gebiete 65 (1983), no. 2, 323–328. MR 722135, DOI 10.1007/BF00532486
- Izumi Kubo, Quasi-flows, Nagoya Math. J. 35 (1969), 1–30. MR 247032, DOI 10.1017/S002776300001299X
- E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. für Math. 44 (1852), 115–116.
- Steffen L. Lauritzen, Extremal families and systems of sufficient statistics, Lecture Notes in Statistics, vol. 49, Springer-Verlag, New York, 1988. MR 971253, DOI 10.1007/978-1-4612-1023-8
- François Ledrappier, Principe variationnel et systèmes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 185–202. MR 404584, DOI 10.1007/BF00533471
- Giorgio Letta, Sur les théorèmes de Hewitt-Savage et de de Finetti, Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer, Berlin, 1989, pp. 531–535 (French). MR 1022936, DOI 10.1007/BFb0083998
- A. N. Livshits, Sufficient conditions for weak mixing of substitutions and of stationary adic transformations, Mat. Zametki 44 (1988), no. 6, 785–793, 862 (Russian); English transl., Math. Notes 44 (1988), no. 5-6, 920–925 (1989). MR 983550, DOI 10.1007/BF01158030
- A. A. Lodkin and A. M. Vershik, Approximation for actions of amenable groups and transversal automorphisms, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 331–346. MR 799577, DOI 10.1007/BFb0074893
- E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184–240.
- Richard A. Olshen, The coincidence of measure algebras under an exchangeable probability, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 153–158. MR 288797, DOI 10.1007/BF00569185
- Richard Olshen, A note on exchangable sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 317–321. MR 375444, DOI 10.1007/BF00532949
- José Luis Palacios, A correction note on: “Generalized Hewitt-Savage theorems for strictly stationary processes” [Proc. Amer. Math. Soc. 63 (1977), no. 2, 313–316; MR0501304 (58 #18695)] by R. Isaac, Proc. Amer. Math. Soc. 88 (1983), no. 1, 138–140. MR 691294, DOI 10.1090/S0002-9939-1983-0691294-6
- José Luis Palacios, The exchangeable sigma-field of Markov chains, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 2, 177–186. MR 779456, DOI 10.1007/BF02450280
- William Parry and Selim Tuncel, Classification problems in ergodic theory, Statistics: Textbooks and Monographs, vol. 41, Cambridge University Press, Cambridge-New York, 1982. MR 666871, DOI 10.1017/CBO9780511629389
- Ronald Pyke, The asymptotic behavior of spacings under Kakutani’s model for interval subdivision, Ann. Probab. 8 (1980), no. 1, 157–163. MR 556422
- Paul Ressel, De Finetti-type theorems: an analytical approach, Ann. Probab. 13 (1985), no. 3, 898–922. MR 799427
- David Ruelle, Statistical mechanics on a compact set with $Z^{v}$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237–251. MR 417391, DOI 10.1090/S0002-9947-1973-0417391-6
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- Klaus Schmidt, Hyperbolic structure preserving isomorphisms of Markov shifts, Israel J. Math. 55 (1986), no. 2, 213–228. MR 868181, DOI 10.1007/BF02801996
- Klaus Schmidt, Algebraic ideas in ergodic theory, CBMS Regional Conference Series in Mathematics, vol. 76, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1074576, DOI 10.1090/cbms/076
- Ja. G. Sinaĭ, Probabilistic concepts in ergodic theory, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 540–559 (Russian). MR 0182714
- Eric V. Slud, A note on exchangeable sequences of events, Rocky Mountain J. Math. 8 (1978), no. 3, 439–442. MR 478306, DOI 10.1216/RMJ-1978-8-3-439
- B. Solomyak, On the spectral theory of adic transformations, Representation theory and dynamical systems, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 217–230. MR 1166205
- Richard Leslie Thompson, Equilibrium states on thin energy shells, Memoirs of the American Mathematical Society, No. 150, American Mathematical Society, Providence, R.I., 1974. MR 0376063
- A. M. Veršik, A description of invariant measures for actions of certain infinite-dimensional groups, Dokl. Akad. Nauk SSSR 218 (1974), 749–752 (Russian). MR 0372161
- A. M. Vershik, Uniform algebraic approximation of shift and multiplication operators, Dokl. Akad. Nauk SSSR 259 (1981), no. 3, 526–529 (Russian). MR 625756
- A. M. Vershik, A theorem on Markov periodic approximation in ergodic theory, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115 (1982), 72–82, 306 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 14. MR 660072
- A. M. Vershik and A. N. Livshits, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, Representation theory and dynamical systems, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 185–204. MR 1166202
- Jan von Plato, The significance of the ergodic decomposition of stationary measures for the interpretation of probability, Synthese 53 (1982), no. 3, 419–432. MR 691638, DOI 10.1007/BF00486158
- Peter Walters, Ruelle’s operator theorem and $g$-measures, Trans. Amer. Math. Soc. 214 (1975), 375–387. MR 412389, DOI 10.1090/S0002-9947-1975-0412389-8
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770
- Robert J. Zimmer, Cocycles and the structure of ergodic group actions, Israel J. Math. 26 (1977), no. 3-4, 214–220. MR 437721, DOI 10.1007/BF03007643
Bibliographic Information
- Karl Petersen
- Affiliation: Department of Mathematics, CB 3250, Phillips Hall, University of North Carolina, Chapel Hill, North Carolina 27599
- MR Author ID: 201837
- ORCID: 0000-0001-5074-7696
- Email: petersen@math.unc.edu
- Klaus Schmidt
- Affiliation: Department of Mathematics, University of Vienna, Vienna, Austria
- Email: klaus.schmidt@univie.ac.at
- Received by editor(s): August 17, 1995
- Received by editor(s) in revised form: August 20, 1996
- Additional Notes: First author supported in part by NSF Grant DMS-9203489.
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 2775-2811
- MSC (1991): Primary 28D05, 60G09; Secondary 58F03, 60J05, 60K35, 82B05
- DOI: https://doi.org/10.1090/S0002-9947-97-01934-X
- MathSciNet review: 1422906