A homotopy classification of certain 7-manifolds
HTML articles powered by AMS MathViewer
- by Bernd Kruggel
- Trans. Amer. Math. Soc. 349 (1997), 2827-2843
- DOI: https://doi.org/10.1090/S0002-9947-97-01962-4
- PDF | Request permission
Abstract:
This paper gives a homotopy classification of Wallach spaces and a partial homotopy classification of closely related spaces obtained by free $S^1$-actions on $SU(3)$ and on $S^3\times S^5$.References
- M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38. MR 0139181
- L.Astey, E.Micha, G.Pastor, Homeomorphism and diffeomorphism types of Eschenburg spaces. Preprint (1994) Instituto Tecnológico Autónomo de México
- Simon Aloff and Nolan R. Wallach, An infinite family of distinct $7$-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97. MR 370624, DOI 10.1090/S0002-9904-1975-13649-4
- Jaroslav Pachner, Problem of energy in an expanding universe, Phys. Rev. (2) 137 (1965), B1379–B1384. MR 189794
- J.-H. Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982), no. 3, 469–480. MR 662603, DOI 10.1007/BF01389224
- Encyclopedic dictionary of mathematics. Vol. I–IV, 2nd ed., MIT Press, Cambridge, MA, 1987. Translated from the Japanese; Edited by Kiyosi Itô. MR 901762
- Matthias Kreck and Stephan Stolz, A diffeomorphism classification of $7$-dimensional homogeneous Einstein manifolds with $\textrm {SU}(3)\times \textrm {SU}(2)\times \textrm {U}(1)$-symmetry, Ann. of Math. (2) 127 (1988), no. 2, 373–388. MR 932303, DOI 10.2307/2007059
- Matthias Kreck and Stephan Stolz, Some nondiffeomorphic homeomorphic homogeneous $7$-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), no. 2, 465–486. MR 1094466
- W. Singhof, On the topology of double coset manifolds, Math. Ann. 297 (1993), no. 1, 133–146. MR 1238411, DOI 10.1007/BF01459492
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Edward Witten, Search for a realistic Kaluza-Klein theory, Nuclear Phys. B 186 (1981), no. 3, 412–428. MR 624244, DOI 10.1016/0550-3213(81)90021-3
Bibliographic Information
- Bernd Kruggel
- Affiliation: Mathematisches Institut der Heinrich Heine Universität, Düsseldorf, Germany
- Address at time of publication: Mathematisches Institut der Heinrich Heine Universität Düsseldorf, Universitätsstr.1, 40225 Düsseldorf, Germany
- Email: kruggel@mx.cs.uni-duesseldorf.de
- Received by editor(s): January 25, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 2827-2843
- MSC (1991): Primary 57N65, 57R19
- DOI: https://doi.org/10.1090/S0002-9947-97-01962-4
- MathSciNet review: 1422611