## A homotopy classification of certain 7-manifolds

HTML articles powered by AMS MathViewer

- by Bernd Kruggel PDF
- Trans. Amer. Math. Soc.
**349**(1997), 2827-2843 Request permission

## Abstract:

This paper gives a homotopy classification of Wallach spaces and a partial homotopy classification of closely related spaces obtained by free $S^1$-actions on $SU(3)$ and on $S^3\times S^5$.## References

- M. F. Atiyah and F. Hirzebruch,
*Vector bundles and homogeneous spaces*, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38. MR**0139181** - L.Astey, E.Micha, G.Pastor,
*Homeomorphism and diffeomorphism types of Eschenburg spaces.*Preprint (1994) Instituto Tecnológico Autónomo de México - Simon Aloff and Nolan R. Wallach,
*An infinite family of distinct $7$-manifolds admitting positively curved Riemannian structures*, Bull. Amer. Math. Soc.**81**(1975), 93–97. MR**370624**, DOI 10.1090/S0002-9904-1975-13649-4 - Jaroslav Pachner,
*Problem of energy in an expanding universe*, Phys. Rev. (2)**137**(1965), B1379–B1384. MR**189794** - J.-H. Eschenburg,
*New examples of manifolds with strictly positive curvature*, Invent. Math.**66**(1982), no. 3, 469–480. MR**662603**, DOI 10.1007/BF01389224 *Encyclopedic dictionary of mathematics. Vol. I–IV*, 2nd ed., MIT Press, Cambridge, MA, 1987. Translated from the Japanese; Edited by Kiyosi Itô. MR**901762**- Matthias Kreck and Stephan Stolz,
*A diffeomorphism classification of $7$-dimensional homogeneous Einstein manifolds with $\textrm {SU}(3)\times \textrm {SU}(2)\times \textrm {U}(1)$-symmetry*, Ann. of Math. (2)**127**(1988), no. 2, 373–388. MR**932303**, DOI 10.2307/2007059 - Matthias Kreck and Stephan Stolz,
*Some nondiffeomorphic homeomorphic homogeneous $7$-manifolds with positive sectional curvature*, J. Differential Geom.**33**(1991), no. 2, 465–486. MR**1094466** - W. Singhof,
*On the topology of double coset manifolds*, Math. Ann.**297**(1993), no. 1, 133–146. MR**1238411**, DOI 10.1007/BF01459492 - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112** - Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - Edward Witten,
*Search for a realistic Kaluza-Klein theory*, Nuclear Phys. B**186**(1981), no. 3, 412–428. MR**624244**, DOI 10.1016/0550-3213(81)90021-3

## Additional Information

**Bernd Kruggel**- Affiliation: Mathematisches Institut der Heinrich Heine Universität, Düsseldorf, Germany
- Address at time of publication: Mathematisches Institut der Heinrich Heine Universität Düsseldorf, Universitätsstr.1, 40225 Düsseldorf, Germany
- Email: kruggel@mx.cs.uni-duesseldorf.de
- Received by editor(s): January 25, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**349**(1997), 2827-2843 - MSC (1991): Primary 57N65, 57R19
- DOI: https://doi.org/10.1090/S0002-9947-97-01962-4
- MathSciNet review: 1422611