Generalized Weil’s reciprocity law and multiplicativity theorems
HTML articles powered by AMS MathViewer
- by András Némethi
- Trans. Amer. Math. Soc. 349 (1997), 2687-2697
- DOI: https://doi.org/10.1090/S0002-9947-97-01979-X
- PDF | Request permission
Abstract:
Fix a one-dimensional group variety $G$ with Euler–characteristic $\chi (G)=0$, and a quasi–projective variety $Y$, both defined over $\mathbf {C}$. For any $f\in Hom(Y,G)$ and constructible sheaf $\mathcal {F}$ on $Y$, we construct an invariant $c_{\mathcal {F}}(f)\in G$, which provides substantial information about the topology of the fiber–structure of $f$ and the structure of $\mathcal {F}$ along the fibers of $f$. Moreover, $c_{\mathcal {F}}:Hom(Y,G)\to G$ is a group homomorphism.References
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210 (French). MR 908218, DOI 10.1007/BF02698937
- F. Loeser: Déterminants et Faisceaux de Kummer, unpublished.
- François Loeser and Claude Sabbah, Équations aux différences finies et déterminants d’intégrales de fonctions multiformes, Comment. Math. Helv. 66 (1991), no. 3, 458–503 (French, with English summary). MR 1120656, DOI 10.1007/BF02566659
- András Némethi, The zeta function of singularities, J. Algebraic Geom. 2 (1993), no. 1, 1–23. MR 1185605
Bibliographic Information
- András Némethi
- Affiliation: Institute of the Romanian Academy, Bucharest, Romania
- Address at time of publication: The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210
- Email: nemethi@math.ohio-state.edu
- Received by editor(s): April 18, 1995
- Additional Notes: Partially supported by NSF Grant No. DMS–9203482 and by the Netherlands Organisation for the Advancement of Scientific Research N.W.O
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 2687-2697
- MSC (1991): Primary 14F05; Secondary 14B05
- DOI: https://doi.org/10.1090/S0002-9947-97-01979-X
- MathSciNet review: 1432205