The quantum analog of a symmetric pair: a construction in type $(C_n,A_1\times C_{n-1})$
HTML articles powered by AMS MathViewer
- by Welleda Baldoni and Pierluigi Möseneder Frajria
- Trans. Amer. Math. Soc. 349 (1997), 3235-3276
- DOI: https://doi.org/10.1090/S0002-9947-97-01759-5
- PDF | Request permission
Abstract:
Let $\mathcal {I}$ be the ideal in the enveloping algebra of $\mathfrak {sp}(n,\mathbb C)$ generated by the maximal compact subalgebra of $\mathfrak {sp}(n-1,1)$. In this paper we construct an analog of $\mathcal I$ in the quantized enveloping algebra $\mathcal {U}$ corresponding to a type $C_{n}$ diagram at generic $q$. We find generators for $\mathcal {I}$ and explicit bases for $\mathcal {U}/\mathcal {I}$.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- C. De Concini and C. Procesi, Quantum groups, $D$-modules, representation theory, and quantum groups (Venice, 1992) Lecture Notes in Math., vol. 1565, Springer, Berlin, 1993, pp. 31–140. MR 1288995, DOI 10.1007/BFb0073466
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- Anthony Joseph and Gail Letzter, Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra 153 (1992), no. 2, 289–318. MR 1198203, DOI 10.1016/0021-8693(92)90157-H
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- J. Lepowski, Representations of semisimple Lie groups and an enveloping algebra decomposition, Ph.D. thesis, M. I. T., 1970.
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI 10.1016/0001-8708(88)90056-4
- George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, DOI 10.1007/BF00147341
- J. C. McConnell, Quantum groups, filtered rings and Gel′fand-Kirillov dimension, Noncommutative ring theory (Athens, OH, 1989) Lecture Notes in Math., vol. 1448, Springer, Berlin, 1990, pp. 139–147. MR 1084629, DOI 10.1007/BFb0091258
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- J. C. McConnell and J. T. Stafford, Gel′fand-Kirillov dimension and associated graded modules, J. Algebra 125 (1989), no. 1, 197–214. MR 1012671, DOI 10.1016/0021-8693(89)90301-3
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063
- Nolan R. Wallach, An asymptotic formula of Gelfand and Gangolli for the spectrum of $G\backslash G$, J. Differential Geometry 11 (1976), no. 1, 91–101. MR 417340
Bibliographic Information
- Welleda Baldoni
- Affiliation: Dipartimento di Matematica Universitá di Roma-Tor Vergata I-00100 Roma, Italy
- Email: Baldoni@mat.utovrm.it
- Pierluigi Möseneder Frajria
- Affiliation: Dipartimento di Matematica Universitá di Trento I-38050 Povo, TN, Italy
- Email: frajria@science.unitn.it
- Received by editor(s): December 15, 1995
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 3235-3276
- MSC (1991): Primary 17B37
- DOI: https://doi.org/10.1090/S0002-9947-97-01759-5
- MathSciNet review: 1390033