On the second adjunction mapping. The case of a $1$-dimensional image
HTML articles powered by AMS MathViewer
- by Mauro C. Beltrametti and Andrew J. Sommese
- Trans. Amer. Math. Soc. 349 (1997), 3277-3302
- DOI: https://doi.org/10.1090/S0002-9947-97-01809-6
- PDF | Request permission
Abstract:
Let $\widehat {L}$ be a very ample line bundle on an $n$-dimensional projective manifold $\widehat {X}$, i.e., assume that $\widehat {L}\approx i^*\mathcal {O}_{\mathbb {P}_ N}(1)$ for some embedding $i:\widehat {X}\hookrightarrow \mathbb {P}_ N$. In this article, a study is made of the meromorphic map, $\widehat {\varphi } : \widehat {X}\to \Sigma$, associated to $|K_{\widehat {X}}+(n-2)\widehat {L}|$ in the case when the Kodaira dimension of $K_{\widehat {X}}+(n-2)\widehat {L}$ is $\ge 3$, and $\widehat {\varphi }$ has a $1$-dimensional image. Assume for simplicity that $n=3$. The first main result of the paper shows that $\widehat \varphi$ is a morphism if either $h^0(K_{\widehat X}+\widehat L)\geq 7$ or $\kappa (\widehat {X})\geq 0$. The second main result of this paper shows that if $\kappa (\widehat X)\ge 0$, then the genus, $g(f)$, of a fiber, $f$, of the map induced by $\widehat \varphi$ on hyperplane sections is $\leq 6$. Moreover, if $h^0(K_{\widehat X}+\widehat L)\ge 21$ then $g(f)\leq 5$, a connected component $F$ of a general fiber of $\widehat \varphi$ is either a $K3$ surface or the blowing up at one point of a $K3$ surface, and $h^1(\mathcal {O}_{\widehat X})\le 1$. Finally the structure of the finite to one part of the Remmert-Stein factorization of $\widehat \varphi$ is worked out.References
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Arnaud Beauville, L’application canonique pour les surfaces de type général, Invent. Math. 55 (1979), no. 2, 121–140 (French). MR 553705, DOI 10.1007/BF01390086
- Mauro Beltrametti, Michael Schneider, and Andrew J. Sommese, Threefolds of degree $11$ in $\textbf {P}^5$, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 59–80. MR 1201375, DOI 10.1017/CBO9780511662652.006
- Mauro C. Beltrametti, Michael Schneider, and Andrew J. Sommese, Some special properties of the adjunction theory for $3$-folds in $\textbf {P}^5$, Mem. Amer. Math. Soc. 116 (1995), no. 554, viii+63. MR 1257080, DOI 10.1090/memo/0554
- M. C. Beltrametti and A. J. Sommese, On the dimension of the adjoint linear system for threefolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 1, 1–24. MR 1315348
- Mauro C. Beltrametti and Andrew J. Sommese, The adjunction theory of complex projective varieties, De Gruyter Expositions in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1995. MR 1318687, DOI 10.1515/9783110871746
- Takao Fujita, Theorems of Bertini type for certain types of polarized manifolds, J. Math. Soc. Japan 34 (1982), no. 4, 709–718. MR 669278, DOI 10.2969/jmsj/03440709
- Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Paltin Ionescu, Embedded projective varieties of small invariants, Algebraic geometry, Bucharest 1982 (Bucharest, 1982) Lecture Notes in Math., vol. 1056, Springer, Berlin, 1984, pp. 142–186. MR 749942, DOI 10.1007/BFb0071773
- Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243, DOI 10.2969/aspm/01010283
- A. Lanteri, M. Palleschi, and A. J. Sommese, On triple covers of $\mathbf P^n$ as very ample divisors, Classification of algebraic varieties (L’Aquila, 1992) Contemp. Math., vol. 162, Amer. Math. Soc., Providence, RI, 1994, pp. 277–292. MR 1272704, DOI 10.1090/conm/162/01537
- Elvira Laura Livorni, Classification of algebraic nonruled surfaces with sectional genus less than or equal to six, Nagoya Math. J. 100 (1985), 1–9. MR 818155, DOI 10.1017/S0027763000000192
- Andrew John Sommese, Hyperplane sections of projective surfaces. I. The adjunction mapping, Duke Math. J. 46 (1979), no. 2, 377–401. MR 534057
- Andrew John Sommese, Hyperplane sections, Algebraic geometry (Chicago, Ill., 1980) Lecture Notes in Math., vol. 862, Springer, Berlin-New York, 1981, pp. 232–271. MR 644822
- Andrew John Sommese, On the minimality of hyperplane sections of projective threefolds, J. Reine Angew. Math. 329 (1981), 16–41. MR 636441, DOI 10.1515/crll.1981.329.16
- Andrew John Sommese, On the adjunction theoretic structure of projective varieties, Complex analysis and algebraic geometry (Göttingen, 1985) Lecture Notes in Math., vol. 1194, Springer, Berlin, 1986, pp. 175–213. MR 855885, DOI 10.1007/BFb0077004
- Andrew J. Sommese, On the nonemptiness of the adjoint linear system of a hyperplane section of a threefold, J. Reine Angew. Math. 402 (1989), 211–220. MR 1022801, DOI 10.1515/crll.1989.402.211
- Hajime Tsuji, Stability of tangent bundles of minimal algebraic varieties, Topology 27 (1988), no. 4, 429–442. MR 976585, DOI 10.1016/0040-9383(88)90022-5
- E. Viehweg, Quasi-Projective Moduli for Polarized Manifolds, Ergeb. Math. Grenzgeb. (3) 30 (1995), Springer, Berlin.
Bibliographic Information
- Mauro C. Beltrametti
- Affiliation: Dipartimento di Matematica, Università degli Studi di Genova, Via Dodecaneso 35, I-16146 Genova, Italy
- Email: beltrame@dima.unige.it
- Andrew J. Sommese
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- Email: sommese.1@nd.edu
- Received by editor(s): January 11, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 3277-3302
- MSC (1991): Primary 14E35, 14C20, 14J40
- DOI: https://doi.org/10.1090/S0002-9947-97-01809-6
- MathSciNet review: 1401513