Kernel of locally nilpotent $R$-derivations of $R[X,Y]$
HTML articles powered by AMS MathViewer
- by S. M. Bhatwadekar and Amartya K. Dutta
- Trans. Amer. Math. Soc. 349 (1997), 3303-3319
- DOI: https://doi.org/10.1090/S0002-9947-97-01946-6
- PDF | Request permission
Abstract:
In this paper we study the kernel of a non-zero locally nilpotent $R$-derivation of the polynomial ring $R[X,Y]$ over a noetherian integral domain $R$ containing a field of characteristic zero. We show that if $R$ is normal then the kernel has a graded $R$-algebra structure isomorphic to the symbolic Rees algebra of an unmixed ideal of height one in $R$, and, conversely, the symbolic Rees algebra of any unmixed height one ideal in $R$ can be embedded in $R[X,Y]$ as the kernel of a locally nilpotent $R$-derivation of $R[X,Y]$. We also give a necessary and sufficient criterion for the kernel to be a polynomial ring in general.References
- Shreeram S. Abhyankar, William Heinzer, and Paul Eakin, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310–342. MR 306173, DOI 10.1016/0021-8693(72)90134-2
- Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461, DOI 10.1007/BFb0060932
- H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976/77), no. 3, 279–299. MR 432626, DOI 10.1007/BF01403135
- S. M. Bhatwadekar and Amartya K. Dutta, On residual variables and stably polynomial algebras, Comm. Algebra 21 (1993), no. 2, 635–645. MR 1199695, DOI 10.1080/00927879308824585
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- H. L. Manocha and J. B. Srivastava (eds.), Algebra and its applications, Lecture Notes in Pure and Applied Mathematics, vol. 91, Marcel Dekker, Inc., New York, 1984. Papers from the international symposium held at New Delhi, December 21–25, 1981. MR 750836
- D. Daigle and G. Freudenburg, Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of $k[X_1, \cdots , X_n]$, Preprint.
- José M. Giral, Krull dimension, transcendence degree and subalgebras of finitely generated algebras, Arch. Math. (Basel) 36 (1981), no. 4, 305–312. MR 623141, DOI 10.1007/BF01223706
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Nobuharu Onoda, Subrings of finitely generated rings over a pseudogeometric ring, Japan. J. Math. (N.S.) 10 (1984), no. 1, 29–53. MR 884429, DOI 10.4099/math1924.10.29
- D. Rees, On a problem of Zariski, Illinois J. Math. 2 (1958), 145–149. MR 95843, DOI 10.1215/ijm/1255380843
- Rudolf Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384–A387 (French). MR 232770
- Peter Russell and Avinash Sathaye, On finding and cancelling variables in $k[X,\,Y,\,Z]$, J. Algebra 57 (1979), no. 1, 151–166. MR 533106, DOI 10.1016/0021-8693(79)90214-X
Bibliographic Information
- S. M. Bhatwadekar
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400 005, India
- Email: smb@tifrvax.tifr.res.in
- Amartya K. Dutta
- Affiliation: Stat - Math Unit, Indian Statistical Institute, 203, B.T. Road, Calcutta-700 035, India
- Email: amartya@isical.ernet.in
- Received by editor(s): January 11, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 3303-3319
- MSC (1991): Primary 13B10; Secondary 13A30
- DOI: https://doi.org/10.1090/S0002-9947-97-01946-6
- MathSciNet review: 1422595