An infinite dimensional Morse theory with applications
HTML articles powered by AMS MathViewer
- by Wojciech Kryszewski and Andrzej Szulkin
- Trans. Amer. Math. Soc. 349 (1997), 3181-3234
- DOI: https://doi.org/10.1090/S0002-9947-97-01963-6
- PDF | Request permission
Abstract:
In this paper we construct an infinite dimensional (extraordinary) cohomology theory and a Morse theory corresponding to it. These theories have some special properties which make them useful in the study of critical points of strongly indefinite functionals (by strongly indefinite we mean a functional unbounded from below and from above on any subspace of finite codimension). Several applications are given to Hamiltonian systems, the one-dimensional wave equation (of vibrating string type) and systems of elliptic partial differential equations.References
- H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 4, 539–603. MR 600524
- Herbert Amann and Eduard Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math. 32 (1980), no. 1-2, 149–189. MR 592715, DOI 10.1007/BF01298187
- Jean-Pierre Aubin and Ivar Ekeland, Applied nonlinear analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 749753
- Abbas Bahri and Henri Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984), no. 4, 403–442. MR 745324, DOI 10.1002/cpa.3160370402
- A. Bahri and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math. 152 (1984), no. 3-4, 143–197. MR 741053, DOI 10.1007/BF02392196
- Vieri Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231–305. MR 1131853, DOI 10.1007/BF01759307
- Maria Letizia Bertotti, Forced oscillations of asymptotically linear Hamiltonian systems, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 3, 729–740 (English, with Italian summary). MR 916290
- Haïm Brézis, Jean-Michel Coron, and Louis Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), no. 5, 667–684. MR 586417, DOI 10.1002/cpa.3160330507
- H. Brézis and L. Nirenberg, Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math. 31 (1978), no. 1, 1–30. MR 470377, DOI 10.1002/cpa.3160310102
- Kung-ching Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1196690, DOI 10.1007/978-1-4612-0385-8
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49. MR 707347, DOI 10.1007/BF01393824
- Wiesław Sasin, On some exterior algebra of differential forms over a differential space, Demonstratio Math. 19 (1986), no. 4, 1063–1075 (1987). MR 916113
- D. G. Costa and C. A. Magalhães, A variational approach to subquadratic perturbations of elliptic systems, J. Differential Equations 111 (1994), no. 1, 103–122. MR 1280617, DOI 10.1006/jdeq.1994.1077
- E. N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Angew. Math. 350 (1984), 1–22. MR 743531, DOI 10.1515/crll.1984.350.1
- Djairo G. de Figueiredo and Patricio L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), no. 1, 99–116. MR 1214781, DOI 10.1090/S0002-9947-1994-1214781-2
- A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York-Berlin, 1972 (German). MR 0415602, DOI 10.1007/978-3-662-00756-3
- G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory. In: Dynamics Reported 3 (New Series), C.K.R.T. Jones, U. Kirchgraber and H.O. Walther eds., Springer-Verlag, Berlin, 1994, pp. 1-24.
- A. Fonda and J. Mawhin, Multiple periodic solutions of conservative systems with periodic nonlinearity, Differential equations and applications, Vol. I, II (Columbus, OH, 1988) Ohio Univ. Press, Athens, OH, 1989, pp. 298–304. MR 1026152
- Lajos Takács, A combinatorial theorem for stochastic processes, Bull. Amer. Math. Soc. 71 (1965), 649–650. MR 177445, DOI 10.1090/S0002-9904-1965-11379-9
- Kazimierz Gęba and Andrzej Granas, Infinite dimensional cohomology theories, J. Math. Pures Appl. (9) 52 (1973), 145–270. MR 380865
- Detlef Gromoll and Wolfgang Meyer, On differentiable functions with isolated critical points, Topology 8 (1969), 361–369. MR 246329, DOI 10.1016/0040-9383(69)90022-6
- Josephus Hulshof and Robertus van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), no. 1, 32–58. MR 1220982, DOI 10.1006/jfan.1993.1062
- W. Kryszewski, B. Przeradzki, and S. Wereński, Remarks on approximation methods in degree theory, Trans. Amer. Math. Soc. 316 (1989), no. 1, 97–114. MR 929237, DOI 10.1090/S0002-9947-1989-0929237-X
- S.J. Li and J.Q. Liu, Some existence theorems on multiple critical points and their applications, Kexue Tongbao 17 (1984), 1025-1027 (in Chinese).
- Shu Jie Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Differential Equations 78 (1989), no. 1, 53–73. MR 986153, DOI 10.1016/0022-0396(89)90075-2
- S. Li and A. Szulkin, Periodic solutions of an asymptotically linear wave equation, Topol. Methods Nonlinear Anal. 1 (1993), no. 2, 211–230. MR 1233092, DOI 10.12775/TMNA.1993.016
- Shu Jie Li and Andrzej Szulkin, Periodic solutions for a class of nonautonomous Hamiltonian systems, J. Differential Equations 112 (1994), no. 1, 226–238. MR 1287559, DOI 10.1006/jdeq.1994.1102
- Shu Jie Li and Michel Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl. 189 (1995), no. 1, 6–32. MR 1312028, DOI 10.1006/jmaa.1995.1002
- J. Q. Liu, A generalized saddle point theorem, J. Differential Equations 82 (1989), no. 2, 372–385. MR 1027975, DOI 10.1016/0022-0396(89)90139-3
- N. G. Lloyd, Degree theory, Cambridge Tracts in Mathematics, No. 73, Cambridge University Press, Cambridge-New York-Melbourne, 1978. MR 0493564
- Yi Ming Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A 33 (1990), no. 12, 1409–1419. MR 1090484
- Yi Ming Long and Eduard Zehnder, Morse-theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic processes, physics and geometry (Ascona and Locarno, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 528–563. MR 1124230
- Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR 982267, DOI 10.1007/978-1-4757-2061-7
- W. V. Petryshyn, On the approximation-solvability of equations involving $A$-proper and psuedo-$A$-proper mappings, Bull. Amer. Math. Soc. 81 (1975), 223–312. MR 388173, DOI 10.1090/S0002-9904-1975-13728-1
- Wolodymyr V. Petryshyn, Approximation-solvability of nonlinear functional and differential equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 171, Marcel Dekker, Inc., New York, 1993. MR 1200455
- Paul H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), no. 1, 31–68. MR 470378, DOI 10.1002/cpa.3160310103
- Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 845785, DOI 10.1090/cbms/065
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Andrzej Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal. 15 (1990), no. 8, 725–739. MR 1074951, DOI 10.1016/0362-546X(90)90089-Y
- Andrzej Szulkin, Cohomology and Morse theory for strongly indefinite functionals, Math. Z. 209 (1992), no. 3, 375–418. MR 1152264, DOI 10.1007/BF02570842
- Andrzej Szulkin, Bifurcation for strongly indefinite functionals and a Liapunov type theorem for Hamiltonian systems, Differential Integral Equations 7 (1994), no. 1, 217–234. MR 1250948
- Kazunaga Tanaka, Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm |u|^{p-1}u=f(x,t)$. II, Trans. Amer. Math. Soc. 307 (1988), no. 2, 615–645. MR 940220, DOI 10.1090/S0002-9947-1988-0940220-X
- J. W. Thomas, Upper and lower bounds for the number of solutions of functional equations involving $k$-set contractions, Rocky Mountain J. Math. 4 (1974), 89–93. Collection of articles on fixed point theory. MR 333858, DOI 10.1216/RMJ-1974-4-1-89
Bibliographic Information
- Wojciech Kryszewski
- MR Author ID: 107160
- Email: wkrysz@mat.uni.torun.pl
- Andrzej Szulkin
- MR Author ID: 210814
- Email: andrzej@matematik.su.se
- Received by editor(s): March 20, 1995
- Additional Notes: The first author was supported in part by the KBN Grant PB 513/2/91.
The second author was supported in part by the Swedish Natural Science Research Council. - © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 3181-3234
- MSC (1991): Primary 58E05; Secondary 34C25, 35J65, 35L05, 55N20, 58F05
- DOI: https://doi.org/10.1090/S0002-9947-97-01963-6
- MathSciNet review: 1422612