The Brauer group of Yetter-Drinfel’d module algebras
HTML articles powered by AMS MathViewer
- by S. Caenepeel, F. Van Oystaeyen and Y. H. Zhang PDF
- Trans. Amer. Math. Soc. 349 (1997), 3737-3771 Request permission
Abstract:
Let $H$ be a Hopf algebra with bijective antipode. In a previous paper, we introduced $H$-Azumaya Yetter-Drinfel′d module algebras, and the Brauer group ${\mathrm {BQ}}(k,H)$ classifying them. We continue our study of ${\mathrm {BQ}}(k,H)$, and we generalize some properties that were previously known for the Brauer-Long group. We also investigate separability properties for $H$-Azumaya algebras, and this leads to the notion of strongly separable $H$-Azumaya algebra, and to a new subgroup of the Brauer group ${\mathrm {BQ}}(k,H)$.References
- M. Beattie, Brauer groups of $H$-module and $H$-dimodule algebras, Queen’s University, Kingston, Ontario, 1976.
- Margaret Beattie, A direct sum decomposition for the Brauer group of $H$-module algebras, J. Algebra 43 (1976), no. 2, 686–693. MR 441942, DOI 10.1016/0021-8693(76)90134-4
- Margaret Beattie, The Brauer group of central separable $G$-Azumaya algebras, J. Algebra 54 (1978), no. 2, 516–525. MR 514083, DOI 10.1016/0021-8693(78)90014-5
- Stefaan Caenepeel, A note on inner actions of Hopf algebras, Proc. Amer. Math. Soc. 113 (1991), no. 1, 31–39. MR 1069684, DOI 10.1090/S0002-9939-1991-1069684-6
- S. Caenepeel, Computing the Brauer-Long group of a Hopf algebra. I. The cohomological theory, Israel J. Math. 72 (1990), no. 1-2, 38–83. Hopf algebras. MR 1098980, DOI 10.1007/BF02764611
- S. Caenepeel, Computing the Brauer-Long group of a Hopf algebra. II. The Skolem-Noether theory, J. Pure Appl. Algebra 84 (1993), no. 2, 107–144. MR 1201047, DOI 10.1016/0022-4049(93)90034-Q
- S. Caenepeel and M. Beattie, A cohomological approach to the Brauer-Long group and the groups of Galois extensions and strongly graded rings, Trans. Amer. Math. Soc. 324 (1991), no. 2, 747–775. MR 987160, DOI 10.1090/S0002-9947-1991-0987160-8
- S. Caenepeel, F. Van Oystaeyen, and Y. H. Zhang, Quantum Yang-Baxter module algebras, Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), 1994, pp. 231–255. MR 1291020, DOI 10.1007/BF00960863
- L. N. Childs, G. Garfinkel, and M. Orzech, The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299–326. MR 349652, DOI 10.1090/S0002-9947-1973-0349652-3
- Lindsay N. Childs, The Brauer group of graded Azumaya algebras. II. Graded Galois extensions, Trans. Amer. Math. Soc. 204 (1975), 137–160. MR 364216, DOI 10.1090/S0002-9947-1975-0364216-5
- A. P. Deegan, A subgroup of the generalised Brauer group of $\Gamma$-Azumaya algebras, J. London Math. Soc. (2) 23 (1981), no. 2, 223–240. MR 609102, DOI 10.1112/jlms/s2-23.2.223
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR 0417149
- F. W. Long, The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559–601. MR 357473, DOI 10.1016/0021-8693(74)90224-5
- Larry A. Lambe and David E. Radford, Algebraic aspects of the quantum Yang-Baxter equation, J. Algebra 154 (1993), no. 1, 228–288. MR 1201922, DOI 10.1006/jabr.1993.1014
- Shahn Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Internat. J. Modern Phys. A 5 (1990), no. 1, 1–91. MR 1027945, DOI 10.1142/S0217751X90000027
- Shahn Majid, Doubles of quasitriangular Hopf algebras, Comm. Algebra 19 (1991), no. 11, 3061–3073. MR 1132774, DOI 10.1080/00927879108824306
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- Morris Orzech, Brauer groups of graded algebras, Brauer groups (Proc. Conf., Northwestern Univ., Evanston, Ill., 1975) Lecture Notes in Math., Vol. 549, Springer, Berlin, 1976, pp. 134–147. MR 0450249
- Morris Orzech, On the Brauer group of algebras having a grading and an action, Canadian J. Math. 28 (1976), no. 3, 533–552. MR 404313, DOI 10.4153/CJM-1976-053-6
- B. Pareigis, Non-additive ring and module theory. II. ${\cal C}$-categories, ${\cal C}$-functors and ${\cal C}$-morphisms, Publ. Math. Debrecen 24 (1977), no. 3-4, 351–361. MR 498792
- David E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), no. 2, 285–315. MR 1220770, DOI 10.1006/jabr.1993.1102
- David E. Radford and Jacob Towber, Yetter-Drinfel′d categories associated to an arbitrary bialgebra, J. Pure Appl. Algebra 87 (1993), no. 3, 259–279. MR 1228157, DOI 10.1016/0022-4049(93)90114-9
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- F. Van Oystaeyen and Y. H. Zhang, The Brauer group of a braided monoidal category, preprint 1996.
- C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963/64), 187–199. MR 167498, DOI 10.1515/crll.1964.213.187
- David N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 261–290. MR 1074714, DOI 10.1017/S0305004100069139
Additional Information
- S. Caenepeel
- Affiliation: Faculty of Applied Sciences, Free University of Brussels, VUB, Pleinlaan 2, B-1050 Brussels, Belgium
- Email: scaenepe@vnet3.vub.ac.be
- F. Van Oystaeyen
- Affiliation: Department of Mathematics, University of Antwerp, UIA, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- MR Author ID: 176900
- Email: francin@wins.uia.ac.be
- Y. H. Zhang
- Email: zhang@wins.uia.ac.be
- Received by editor(s): August 24, 1994
- Received by editor(s) in revised form: March 19, 1996
- Additional Notes: The third author wishes to thank the Free University of Brussels for its financial support during the time when this paper was written.
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 3737-3771
- MSC (1991): Primary 16A16, 16A24
- DOI: https://doi.org/10.1090/S0002-9947-97-01839-4
- MathSciNet review: 1454120