Elliptic three-folds II: Multiple fibres
HTML articles powered by AMS MathViewer
- by Mark Gross
- Trans. Amer. Math. Soc. 349 (1997), 3409-3468
- DOI: https://doi.org/10.1090/S0002-9947-97-01845-X
- PDF | Request permission
Abstract:
Let $f:X\rightarrow S$ be an elliptic fibration with a section, where $S$ is a projective surface and $X$ is a projective threefold. We determine when it is possible to perform a logarithmic transformation along a closed subset $Z\subseteq S$ to obtain a new elliptic fibration $f’:X’\rightarrow S$ which now has multiple fibres along $Z$. This is done in the setting of Ogg-Shafarevich theory. We find a number of obstructions to performing such a logarithmic transformation, the very last of which takes values in the torsion part of the codimension 2 Chow group of $X$.References
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- S. Bloch, Torsion algebraic cycles and a theorem of Roitman, Compositio Math. 39 (1979), no. 1, 107–127. MR 539002
- Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191
- François R. Cossec and Igor V. Dolgachev, Enriques surfaces. I, Progress in Mathematics, vol. 76, Birkhäuser Boston, Inc., Boston, MA, 1989. MR 986969, DOI 10.1007/978-1-4612-3696-2
- Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, and Christophe Soulé, Torsion dans le groupe de Chow de codimension deux, Duke Math. J. 50 (1983), no. 3, 763–801 (French). MR 714830, DOI 10.1215/S0012-7094-83-05038-X
- David A. Cox and Steven Zucker, Intersection numbers of sections of elliptic surfaces, Invent. Math. 53 (1979), no. 1, 1–44. MR 538682, DOI 10.1007/BF01403189
- P. Deligne, Courbes elliptiques: formulaire d’après J. Tate, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975, pp. 53–73 (French). MR 0387292
- Igor Dolgachev and Mark Gross, Elliptic threefolds. I. Ogg-Shafarevich theory, J. Algebraic Geom. 3 (1994), no. 1, 39–80. MR 1242006
- Yoshio Fujimoto, Logarithmic transformations on elliptic fiber spaces, J. Math. Kyoto Univ. 28 (1988), no. 1, 91–110. MR 929211, DOI 10.1215/kjm/1250520560
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Grassi, A., Minimal Models of Elliptic Threefolds, Ph.D. Thesis, Duke University, 1990.
- Mark Gross, A finiteness theorem for elliptic Calabi-Yau threefolds, Duke Math. J. 74 (1994), no. 2, 271–299. MR 1272978, DOI 10.1215/S0012-7094-94-07414-0
- L. C. Young, On an inequality of Marcel Riesz, Ann. of Math. (2) 40 (1939), 567–574. MR 39, DOI 10.2307/1968941
- K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111–152. MR 132556, DOI 10.2307/1969881
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- Rick Miranda, Smooth models for elliptic threefolds, The birational geometry of degenerations (Cambridge, Mass., 1981) Progr. Math., vol. 29, Birkhäuser, Boston, Mass., 1983, pp. 85–133. MR 690264
- David Mumford and Kalevi Suominen, Introduction to the theory of moduli, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, pp. 171–222. MR 0437531
- Noboru Nakayama, On Weierstrass models, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, pp. 405–431. MR 977771
- Nakayama, N., Local Structure of an Elliptic Fibration, Preprint, Univ. of Tokyo, 1991.
- A. P. Ogg, Cohomology of abelian varieties over function fields, Ann. of Math. (2) 76 (1962), 185–212. MR 155824, DOI 10.2307/1970272
- I. R. Šafarevič, Principal homogeneous spaces defined over a function field, Trudy Mat. Inst. Steklov. 64 (1961), 316–346 (Russian). MR 0162806
Bibliographic Information
- Mark Gross
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
- MR Author ID: 308804
- Email: mgross@math.cornell.edu
- Received by editor(s): June 19, 1995
- Additional Notes: This material is based upon work supported by the North Atlantic Treaty Organization under a Grant awarded in 1990. Research at MSRI supported in part by NSF grant #DMS 9022140.
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 3409-3468
- MSC (1991): Primary 14J30
- DOI: https://doi.org/10.1090/S0002-9947-97-01845-X
- MathSciNet review: 1401771