Absolute Borel sets and function spaces
HTML articles powered by AMS MathViewer
- by Witold Marciszewski and Jan Pelant PDF
- Trans. Amer. Math. Soc. 349 (1997), 3585-3596 Request permission
Abstract:
An internal characterization of metric spaces which are absolute Borel sets of multiplicative classes is given. This characterization uses complete sequences of covers, a notion introduced by Frolík for characterizing Čech-complete spaces. We also show that the absolute Borel class of $X$ is determined by the uniform structure of the space of continuous functions $C_{p}(X)$; however the case of absolute $G_{\delta }$ metric spaces is still open. More precisely, we prove that, for metrizable spaces $X$ and $Y$, if $\Phi : C_{p}(X) \rightarrow C_{p}(Y)$ is a uniformly continuous surjection and $X$ is an absolute Borel set of multiplicative (resp., additive) class $\alpha$, $\alpha >1$, then $Y$ is also an absolute Borel set of the same class. This result is new even if $\Phi$ is a linear homeomorphism, and extends a result of Baars, de Groot, and Pelant which shows that the Čech-completeness of a metric space $X$ is determined by the linear structure of $C_{p}(X)$.References
- A. V. Arkhangel′skiĭ, Topological function spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian by R. A. M. Hoksbergen. MR 1144519, DOI 10.1007/978-94-011-2598-7
- A. V. Arhangel′skiĭ, On topological spaces which are complete in the sense of Čech, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1961 (1961), no. 2, 37–40 (Russian, with English summary). MR 0131258
- Jan Baars, Joost de Groot, and Jan Pelant, Function spaces of completely metrizable spaces, Trans. Amer. Math. Soc. 340 (1993), no. 2, 871–883. MR 1160154, DOI 10.1090/S0002-9947-1993-1160154-X
- Alberto Barbati, The hyperspace of an analytic metrizable space is analytic, Proceedings of the Eleventh International Conference of Topology (Trieste, 1993), 1993, pp. 15–21 (1994) (English, with English and Italian summaries). MR 1346314
- Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778, DOI 10.1007/978-94-015-8149-3
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- J. P. R. Christensen, Topology and Borel structure, North-Holland Mathematics Studies, Vol. 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory. MR 0348724
- C. Costantini, Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2569–2574. MR 1273484, DOI 10.1090/S0002-9939-1995-1273484-5
- C. Costantini, S. Levi, J. Pelant, On compactness in hyperspaces, in preparation.
- T. Dobrowolski, S. P. Gul′ko, and J. Mogilski, Function spaces homeomorphic to the countable product of $l^f_2$, Topology Appl. 34 (1990), no. 2, 153–160. MR 1041769, DOI 10.1016/0166-8641(90)90077-F
- Tadeusz Dobrowolski and Witold Marciszewski, Classification of function spaces with the pointwise topology determined by a countable dense set, Fund. Math. 148 (1995), no. 1, 35–62. MR 1354937, DOI 10.4064/fm-148-1-35-62
- Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna, Tom 47. [Mathematics Library. Vol. 47]. MR 0500779
- D. H. Fremlin, Families of compact sets and Tukey’s ordering, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), no. 1, 29–50. MR 1111757
- Zdeněk Frolík, Generalizations of the $G_{\delta }$-property of complete metric spaces, Czechoslovak Math. J. 10(85) (1960), 359–379 (English, with Russian summary). MR 116305
- —, Topologically complete spaces, Comment. Math. Univ. Carol. 1 (1960), 1–3.
- Z. Frolík, A contribution to the descriptive theory of sets and spaces, General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961) Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962, pp. 157–173. MR 0145471
- Zdeněk Frolík, A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J. 20(95) (1970), 406–467. MR 266757
- Sergei Gul’ko, The space $C_p(X)$ for countable infinite compact $X$ is uniformly homeomorphic to $c_0$, Bull. Polish Acad. Sci. Math. 36 (1988), no. 5-6, 391–396 (1989) (English, with Russian summary). MR 1101684
- S. P. Gul′ko, On uniform homeomorphisms of spaces of continuous functions, Trudy Mat. Inst. Steklov. 193 (1992), 82–88 (Russian); English transl., Proc. Steklov Inst. Math. 3(193) (1993), 87–93. MR 1265990
- R. W. Hansell, Descriptive topology, Recent progress in general topology, M. Hušek and J. van Mill, editors, North-Holland, Amsterdam, 1992, pp. 275–315.
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323
- H. J. K. Junnila and H. P. A. Künzi, Characterizations of absolute $F_{\sigma \delta }$-sets, preprint.
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Victor Klee, On the Borelian and projective types of linear subspaces, Math. Scand. 6 (1958), 189–199. MR 105005, DOI 10.7146/math.scand.a-10543
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- O. G. Okunev, Weak topology of a dual space and a $t$-equivalence relation, Mat. Zametki 46 (1989), no. 1, 53–59, 123 (Russian); English transl., Math. Notes 46 (1989), no. 1-2, 534–538 (1990). MR 1019256, DOI 10.1007/BF01159103
- Jean Saint-Raymond, La structure borélienne d’Effros est-elle standard?, Fund. Math. 100 (1978), no. 3, 201–210 (French). MR 509546, DOI 10.4064/fm-100-3-201-210
- W. Sierpiński, Sur une définition topologique des ensembles $F_{\sigma \delta }$, Fund. Math. 6 (1924), 24–29.
- V. V. Uspenskiĭ, A characterization of compactness in terms of the uniform structure in a space of functions, Uspekhi Mat. Nauk 37 (1982), no. 4(226), 183–184 (Russian). MR 667997
- V. Valov, Linear mappings between function spaces, preprint.
Additional Information
- Witold Marciszewski
- Affiliation: Vrije Universiteit, Faculty of Mathematics and Computer Science, De Boelelaan 1081 a, 1081 HV Amsterdam, The Netherlands
- Address at time of publication: Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
- MR Author ID: 119645
- Email: wmarcisz@cs.vu.nl
- Jan Pelant
- Affiliation: Mathematical Institute of the Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic
- Email: pelant@mbox.cesnet.cz
- Received by editor(s): December 14, 1995
- Additional Notes: The first author was supported in part by KBN grant 2 P301 024 07.
The second author was supported in part by the grant GAČR 201/94/0069 and the grant of the Czech Acad. Sci. 119401. - © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 3585-3596
- MSC (1991): Primary 04A15, 54H05, 54C35
- DOI: https://doi.org/10.1090/S0002-9947-97-01852-7
- MathSciNet review: 1401778