Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Quadratic optimal control of stable well-posed linear systems
HTML articles powered by AMS MathViewer

by Olof J. Staffans PDF
Trans. Amer. Math. Soc. 349 (1997), 3679-3715 Request permission

Abstract:

We consider the infinite horizon quadratic cost minimization problem for a stable time-invariant well-posed linear system in the sense of Salamon and Weiss, and show that it can be reduced to a spectral factorization problem in the control space. More precisely, we show that the optimal solution of the quadratic cost minimization problem is of static state feedback type if and only if a certain spectral factorization problem has a solution. If both the system and the spectral factor are regular, then the feedback operator can be expressed in terms of the Riccati operator, and the Riccati operator is a positive self-adjoint solution of an algebraic Riccati equation. This Riccati equation is similar to the usual algebraic Riccati equation, but one of its coefficients varies depending on the subspace in which the equation is posed. Similar results are true for unstable systems, as we have proved elsewhere.
References
  • D. Z. Arov and M. A. Nudelman, Passive linear stationary dynamical scattering systems with continuous time, Integral Equations Operator Theory 24 (1996), no. 1, 1–45. MR 1366539, DOI 10.1007/BF01195483
  • Alain Bensoussan, Giuseppe Da Prato, Michel C. Delfour, and Sanjoy K. Mitter, Representation and control of infinite-dimensional systems. Vol. 1, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1182557
  • Arlen Brown and Carl Pearcy, Introduction to operator theory. I, Graduate Texts in Mathematics, No. 55, Springer-Verlag, New York-Heidelberg, 1977. Elements of functional analysis. MR 0511596
  • Ruth F. Curtain (ed.), Modelling, robustness and sensitivity reduction in control systems, NATO Advanced Science Institutes Series F: Computer and Systems Sciences, vol. 34, Springer-Verlag, Berlin, 1987. MR 912125, DOI 10.1007/978-3-642-87516-8
  • Frank M. Callier and Joseph Winkin, Spectral factorization and LQ-optimal regulation for multivariable distributed systems, Internat. J. Control 52 (1990), no. 1, 55–75. MR 1061023, DOI 10.1080/00207179008953524
  • Frank M. Callier and Joseph Winkin, LQ-optimal control of infinite-dimensional systems by spectral factorization, Automatica J. IFAC 28 (1992), no. 4, 757–770. MR 1168933, DOI 10.1016/0005-1098(92)90035-E
  • L. E. Carpenter. Cascade analysis and synthesis of transfer functions of intinite dimensional linear systems. Doctoral dissertation, Virginia Polytechnic Inst. and State Univ., 1992.
  • R. F. Curtain. Well-posedness of infinite-dimensional linear systems in time and frequency domain. Technical report, University of Groningen, 1988.
  • R. F. Curtain, Representations of infinite-dimensional systems, Three decades of mathematical system theory, Lect. Notes Control Inf. Sci., vol. 135, Springer, Berlin, 1989, pp. 101–128. MR 1025788, DOI 10.1007/BFb0008460
  • R. F. Curtain, A. Bensoussan, and J.-L. Lions (eds.), Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems, Lecture Notes in Control and Information Sciences, vol. 185, Springer-Verlag, Berlin, 1993. MR 1208262, DOI 10.1007/BFb0115017
  • Ruth F. Curtain and George Weiss, Well posedness of triples of operators (in the sense of linear systems theory), Control and estimation of distributed parameter systems (Vorau, 1988) Internat. Ser. Numer. Math., vol. 91, Birkhäuser, Basel, 1989, pp. 41–59. MR 1033051
  • R. F. Curtain, G. Weiss, and M. Weiss. Coprime factorization for regular linear systems. Automatica, 32: 1513–1531, 1996.
  • Ruth F. Curtain and Hans Zwart, An introduction to infinite-dimensional linear systems theory, Texts in Applied Mathematics, vol. 21, Springer-Verlag, New York, 1995. MR 1351248, DOI 10.1007/978-1-4612-4224-6
  • G. Da Prato and M. C. Delfour, Unbounded solutions to the linear quadratic control problem, SIAM J. Control Optim. 30 (1992), no. 1, 31–48. MR 1145703, DOI 10.1137/0330003
  • Avraham Feintuch and Richard Saeks, System theory, Pure and Applied Mathematics, vol. 102, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. A Hilbert space approach. MR 663906
  • R. F. Curtain, A. Bensoussan, and J.-L. Lions (eds.), Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems, Lecture Notes in Control and Information Sciences, vol. 185, Springer-Verlag, Berlin, 1993. MR 1208262, DOI 10.1007/BFb0115017
  • F. Flandoli, I. Lasiecka, and R. Triggiani, Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems, Ann. Mat. Pura Appl. (4) 153 (1988), 307–382 (1989). MR 1008349, DOI 10.1007/BF01762397
  • I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, Vol. 41, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware. MR 0355675
  • Piotr Grabowski, On the spectral-Lyapunov approach to parametric optimization of distributed-parameter systems, IMA J. Math. Control Inform. 7 (1990), no. 4, 317–338. MR 1099758, DOI 10.1093/imamci/7.4.317
  • Cüneyt M. Özveren and Alan S. Willsky, Tracking and restrictability in discrete event dynamic systems, SIAM J. Control Optim. 30 (1992), no. 6, 1423–1446. MR 1185631, DOI 10.1137/0330076
  • Piotr Grabowski, The LQ controller problem: an example, IMA J. Math. Control Inform. 11 (1994), no. 4, 355–368. MR 1318352, DOI 10.1093/imamci/11.4.355
  • G. Grübel, Zur Bestimmung einer Zustandsraumdarstellung aus der skalaren Differentialgleichung bei linearen zeitvariablen Systemen, Regelungstech. Prozeß-Datenverarbeit. 18 (1970), no. 11, 504–506 (German, with English summary). MR 416690
  • Vladimír Kučera, New results in state estimation and regulation, Automatica J. IFAC 17 (1981), no. 5, 745–748. MR 632848, DOI 10.1016/0005-1098(81)90021-2
  • Irena Lasiecka, Riccati equations arising from boundary and point control problems, Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992) Lect. Notes Control Inf. Sci., vol. 185, Springer, Berlin, 1993, pp. 23–45. MR 1208264, DOI 10.1007/BFb0115019
  • I. Lasiecka and R. Triggiani, Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory, Lecture Notes in Control and Information Sciences, vol. 164, Springer-Verlag, Berlin, 1991. MR 1132440, DOI 10.1007/BFb0006880
  • I. Lasiecka and R. Triggiani, Algebraic Riccati equations arising from systems with unbounded input-solution operator: applications to boundary control problems for wave and plate equations, Nonlinear Anal. 20 (1993), no. 6, 659–695. MR 1214734, DOI 10.1016/0362-546X(93)90026-O
  • J.-Cl. Louis and D. Wexler, The Hilbert space regulator problem and operator Riccati equation under stabilizability, Ann. Soc. Sci. Bruxelles Sér. I 105 (1991), no. 4, 137–165 (1992). MR 1175033
  • L. Pandolfi, The standard regulator problem for systems with input delays. An approach through singular control theory, Appl. Math. Optim. 31 (1995), no. 2, 119–136. MR 1309302, DOI 10.1007/BF01182784
  • A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
  • A. J. Pritchard and D. Salamon. The linear-quadratic control problem for retarded systems with delays in control and observation. IMA Journal of Mathematical Control & Information, 2:335–362, 1985.
  • S. Minakshi Sundaram, On non-linear partial differential equations of the parabolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 479–494. MR 0000088
  • Matania Ben-Artzi and Allen Devinatz, Resolvent estimates for a sum of tensor products with applications to the spectral theory of differential operators, J. Analyse Math. 43 (1983/84), 215–250. MR 777419, DOI 10.1007/BF02790185
  • Dietmar Salamon, Control and observation of neutral systems, Research Notes in Mathematics, vol. 91, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 724934
  • Dietmar Salamon, Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach, Trans. Amer. Math. Soc. 300 (1987), no. 2, 383–431. MR 876460, DOI 10.1090/S0002-9947-1987-0876460-7
  • Dietmar Salamon, Realization theory in Hilbert space, Math. Systems Theory 21 (1989), no. 3, 147–164. MR 977021, DOI 10.1007/BF02088011
  • O. J. Staffans. Quadratic optimal control of stable abstract linear systems. In The IFIP Conference on Modelling and Optimization of Distributed Parameter Systems with Applications to Engineering, Warsaw, Poland, 1995. Chapman & Hall, pp. 167–174.
  • O. J. Staffans. Quadratic optimal control of stable systems through spectral factorization. Mathematics of Control, Signals, and Systems, 8: 167–197, 1995.
  • O. J. Staffans. Quadratic optimal control through coprime and spectral factorizations. Submitted, 1996a.
  • O. J. Staffans. Coprime factorizations for well-posed linear systems. To appear in SIAM Journal on Control and Optimization, 1996b.
  • O. J. Staffans. Quadratic optimal control of well-posed linear systems. To appear in SIAM Journal on Control and Optimization, 1996c.
  • O. J. Staffans. On the discrete and continuous time infinite-dimensional Riccati equations. Systems and Control Letters, 29: 131–138, 1996. .
  • Bert van Keulen, $\scr H_{\infty }$-control for distributed parameter systems: a state-space approach, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1269323, DOI 10.1007/978-1-4612-0347-6
  • George Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim. 27 (1989), no. 3, 527–545. MR 993285, DOI 10.1137/0327028
  • George Weiss, Admissible observation operators for linear semigroups, Israel J. Math. 65 (1989), no. 1, 17–43. MR 994732, DOI 10.1007/BF02788172
  • George Weiss, Transfer functions of regular linear systems. I. Characterizations of regularity, Trans. Amer. Math. Soc. 342 (1994), no. 2, 827–854. MR 1179402, DOI 10.1090/S0002-9947-1994-1179402-6
  • George Weiss, Regular linear systems with feedback, Math. Control Signals Systems 7 (1994), no. 1, 23–57. MR 1359020, DOI 10.1007/BF01211484
  • G. Weiss and H. Zwart. An example in LQ optimal control. Preprint, 1996.
  • M. Weiss. Riccati equations in Hilbert space: A Popov function approach. Doctoral dissertation, Rijksuniversiteit Groningen, 1994.
  • M. Weiss. Riccati equation theory for Pritchard-Salamon systems: a Popov function approach. IMA Journal of Mathematical Control & Information, 14: 1–37, 1997.
  • M. Weiss and G. Weiss. Optimal control of stable weakly regular linear systems. Preprint, 1996.
  • J. Winkin. Spectral factorization and feedback control for infinite-dimensional control systems. Doctoral dissertation, Facultées Universitaires Notre-Dame de la Paix à Namur, 1989.
  • H. Zwart. Linear quadratic optimal control for abstract linear systems. In The IFIP Conference on Modelling and Optimization of Distributed Parameter Systems with Applications to Engineering, Warsaw, Poland, 1995. Chapman & Hall, pp. 175–182.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 49J27, 93A05, 47B35
  • Retrieve articles in all journals with MSC (1991): 49J27, 93A05, 47B35
Additional Information
  • Olof J. Staffans
  • Affiliation: Department of Mathematics, Åbo Akademi University, FIN-20500 Åbo, Finland
  • Email: Olof.Staffans@abo.fi
  • Received by editor(s): January 30, 1995
  • Received by editor(s) in revised form: March 20, 1996
  • © Copyright 1997 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 349 (1997), 3679-3715
  • MSC (1991): Primary 49J27, 93A05, 47B35
  • DOI: https://doi.org/10.1090/S0002-9947-97-01863-1
  • MathSciNet review: 1407712