## Boundary limits and non-integrability of $\mathcal M$-subharmonic functions in the unit ball of $\mathbb C^n (n\ge 1)$

HTML articles powered by AMS MathViewer

- by Manfred Stoll PDF
- Trans. Amer. Math. Soc.
**349**(1997), 3773-3785 Request permission

## Abstract:

In this paper we consider weighted non-tangential and tangential boundary limits of non-negative functions on the unit ball $B$ in ${{\mathbb {C}}^{\vphantom {P}}}^{n}$ that are subharmonic with respect to the Laplace-Beltrami operator $\widetilde {\varDelta }$ on $B$. Since the operator $\widetilde {\varDelta }$ is invariant under the group $\mathcal {M}$ of holomorphic automorphisms of $B$, functions that are subharmonic with respect to $\widetilde {\varDelta }$ are usually referred to as $\mathcal {M}$-subharmonic functions. Our main result is as follows: Let $f$ be a non-negative $\mathcal {M}$-subharmonic function on $B$ satisfying \begin{equation*}\int _{B} (1-|z|^{2})^{\gamma }f^{p}(z) d\lambda (z)< \infty \end{equation*} for some $p> 0$ and some $\gamma >\min \{n,pn\}$, where $\lambda$ is the $\mathcal {M}$-invariant measure on $B$. Suppose $\tau \ge 1$. Then for a.e. $\zeta \in S$, \begin{equation*}f^{p}(z)= o\left ((1-|z|^{2})^{n/\tau -\gamma }\right ) \end{equation*} uniformly as $z\to \zeta$ in each $\mathcal {T}_{\tau ,\alpha }(\zeta )$, where for $\alpha >0$ ($\alpha >\frac {1}{2}$ when $\tau =1$) \begin{equation*}\mathcal {T}_{\tau ,\alpha }(\zeta ) = \{z\in B: |1-\langle z,\zeta \rangle |^{\tau } <\alpha (1-|z|^{2}) \}. \end{equation*} We also prove that for $\gamma \le \min \{n,pn\}$ the only non-negative $\mathcal {M}$-subharmonic function satisfying the above integrability criteria is the zero function.## References

- Robert D. Berman and William S. Cohn,
*Littlewood theorems for limits and growth of potentials along level sets of Hรถlder continuous functions*, Amer. J. Math.**114**(1992), no.ย 1, 185โ227. MR**1147722**, DOI 10.2307/2374742 - G. T. Cargo,
*Angular and tangential limits of Blaschke products and their successive derivatives*, Canadian J. Math.**14**(1962), 334โ348. MR**136743**, DOI 10.4153/CJM-1962-026-2 - William S. Cohn,
*Nonisotropic Hausdorff measure and exceptional sets for holomorphic Sobolev functions*, Illinois J. Math.**33**(1989), no.ย 4, 673โ690. MR**1007902** - C. Fefferman and E. M. Stein,
*$H^{p}$ spaces of several variables*, Acta Math.**129**(1972), no.ย 3-4, 137โ193. MR**447953**, DOI 10.1007/BF02392215 - Saunders MacLane and O. F. G. Schilling,
*Infinite number fields with Noether ideal theories*, Amer. J. Math.**61**(1939), 771โ782. MR**19**, DOI 10.2307/2371335 - K. T. Hahn, M. Stoll, and H. Youssfi,
*Invariant potentials and tangential boundary behavior of $\mathcal {M}$-subharmonic functions in the unit ball*, Complex Variables**28**(1995), 67โ96. - K. T. Hahn and E. H. Youssfi,
*Tangential boundary behavior of $M$-harmonic Besov functions in the unit ball*, J. Math. Anal. Appl.**175**(1993), no.ย 1, 206โ221. MR**1216756**, DOI 10.1006/jmaa.1993.1163 - G. H. Hardy and J. E. Littlewood,
*Some properties of conjugate functions*, J. Reine Angew. Math.**167**(1932), 403โ423. - J. R. Kinney,
*Boundary behavior of Blaschke products in the unit circle*, Proc. Amer. Math. Soc.**12**(1961), 484โ488. MR**125228**, DOI 10.1090/S0002-9939-1961-0125228-5 - John R. Kinney,
*Tangential limits of functions of the class $S_{\alpha }$*, Proc. Amer. Math. Soc.**14**(1963), 68โ70. MR**143916**, DOI 10.1090/S0002-9939-1963-0143916-3 - Paul Koosis,
*Introduction to $H_{p}$ spaces*, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolffโs proof of the corona theorem. MR**565451** - Barbara D. MacCluer,
*Compact composition operators on $H^p(B_N)$*, Michigan Math. J.**32**(1985), no.ย 2, 237โ248. MR**783578**, DOI 10.1307/mmj/1029003191 - Alexander Nagel, Walter Rudin, and Joel H. Shapiro,
*Tangential boundary behavior of functions in Dirichlet-type spaces*, Ann. of Math. (2)**116**(1982), no.ย 2, 331โ360. MR**672838**, DOI 10.2307/2007064 - Miroslav Pavloviฤ,
*Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball*, Indag. Math. (N.S.)**2**(1991), no.ย 1, 89โ98. MR**1104834**, DOI 10.1016/0019-3577(91)90044-8 - Walter Rudin,
*Function theory in the unit ball of $\textbf {C}^{n}$*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR**601594** - L. Rzepecki,
*Boundary behavior of non-isotropic potentials in the unit ball of $\mathbb {C}^n$*, Ph. D. Dissertation, University of South Carolina (1995). - Manfred Stoll,
*Tangential boundary limits of invariant potentials in the unit ball of $\textbf {C}^n$*, J. Math. Anal. Appl.**177**(1993), no.ย 2, 553โ571. MR**1231501**, DOI 10.1006/jmaa.1993.1277 - Manfred Stoll,
*Invariant potential theory in the unit ball of $\textbf {C}^n$*, London Mathematical Society Lecture Note Series, vol. 199, Cambridge University Press, Cambridge, 1994. MR**1297545**, DOI 10.1017/CBO9780511526183 - Manfred Stoll,
*Non-isotropic Hausdorff capacity of exceptional sets of invariant potentials*, Potential Anal.**4**(1995), no.ย 2, 141โ155. MR**1323823**, DOI 10.1007/BF01275587 - Juan Sueiro,
*Tangential boundary limits and exceptional sets for holomorphic functions in Dirichlet-type spaces*, Math. Ann.**286**(1990), no.ย 4, 661โ678. MR**1045395**, DOI 10.1007/BF01453595 - Noriaki Suzuki,
*Nonintegrability of harmonic functions in a domain*, Japan. J. Math. (N.S.)**16**(1990), no.ย 2, 269โ278. MR**1091161**, DOI 10.4099/math1924.16.269 - M. Tsuji,
*Potential theory in modern function theory*, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR**0414898** - J. B. Twomey,
*Tangential limits for certain classes of analytic functions*, Mathematika**36**(1989), no.ย 1, 39โ49. MR**1014199**, DOI 10.1112/S0025579300013553 - David Ullrich,
*Radial limits of $M$-subharmonic functions*, Trans. Amer. Math. Soc.**292**(1985), no.ย 2, 501โ518. MR**808734**, DOI 10.1090/S0002-9947-1985-0808734-8 - Shi Ying Zhao,
*On the weighted $L^p$-integrability of nonnegative $\scr M$-superharmonic functions*, Proc. Amer. Math. Soc.**115**(1992), no.ย 3, 677โ685. MR**1101993**, DOI 10.1090/S0002-9939-1992-1101993-5

## Additional Information

**Manfred Stoll**- Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
- Email: stoll@math.sc.edu
- Received by editor(s): May 20, 1995
- Received by editor(s) in revised form: April 1, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**349**(1997), 3773-3785 - MSC (1991): Primary 31B25, 32F05
- DOI: https://doi.org/10.1090/S0002-9947-97-01891-6
- MathSciNet review: 1407502