Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Asymptotic prime-power divisibility of binomial, generalized binomial, and multinomial coefficients
HTML articles powered by AMS MathViewer

by John M. Holte PDF
Trans. Amer. Math. Soc. 349 (1997), 3837-3873 Request permission

Abstract:

This paper presents asymptotic formulas for the abundance of binomial, generalized binomial, multinomial, and generalized multinomial coefficients having any given degree of prime-power divisibility. In the case of binomial coefficients, for a fixed prime $p$, we consider the number of $(x, y)$ with $0 \leq x, y < p^n$ for which $\binom {x+y}{x}$ is divisible by $p^{zn}$ (but not $p^{zn+1}$) when $zn$ is an integer and $\alpha < z < \beta$, say. By means of a classical theorem of Kummer and the probabilistic theory of large deviations, we show that this number is approximately $p^{n D((\alpha , \beta ))}$, where $D((\alpha , \beta )) := \sup \{ D(z) : \alpha < z < \beta \}$ and $D$ is given by an explicit formula. We also develop a “$p$-adic multifractal” theory and show how $D$ may be interpreted as a multifractal spectrum of divisibility dimensions. We then prove that essentially the same results hold for a large class of the generalized binomial coefficients of Knuth and Wilf, including the $q$-binomial coefficients of Gauss and the Fibonomial coefficients of Lucas, and finally we extend our results to multinomial coefficients and generalized multinomial coefficients.
References
  • W. Antony Broomhead, Pascal ($\textrm {mod}\ p$), Math. Gaz. 56 (1972), no. 398, 267–271. MR 485410, DOI 10.2307/3617828
  • L. Carlitz, The number of binomial coefficients divisible by a fixed power of a prime, Rend. Circ. Mat. Palermo (2) 16 (1967), 299–320. MR 249308, DOI 10.1007/BF02843799
  • Gregory J. Chaitin, Algorithmic information theory, Cambridge Tracts in Theoretical Computer Science, vol. 1, Cambridge University Press, Cambridge, 1987. With a foreword by J. T. Schwartz. MR 917482, DOI 10.1017/CBO9780511608858
  • Kai Lai Chung, Markov chains with stationary transition probabilities, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 104, Springer-Verlag New York, Inc., New York, 1967. MR 0217872, DOI 10.1007/978-3-642-62015-7
  • L. E. Dickson, Analytic representation of substitution, I, Annals of Math. 11 (1897), nos. 3–4, 65–120.
  • Leonard Eugene Dickson, History of the theory of numbers. Vol. I: Divisibility and primality. , Chelsea Publishing Co., New York, 1966. MR 0245499
  • Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, Jones and Bartlett Publishers, Boston, MA, 1993. MR 1202429
  • M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time. I. II, Comm. Pure Appl. Math. 28 (1975), 1–47; ibid. 28 (1975), 279–301. MR 386024, DOI 10.1002/cpa.3160280102
  • Richard S. Ellis, Large deviations for a general class of random vectors, Ann. Probab. 12 (1984), no. 1, 1–12. MR 723726
  • Richard S. Ellis, Entropy, large deviations, and statistical mechanics, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 271, Springer-Verlag, New York, 1985. MR 793553, DOI 10.1007/978-1-4613-8533-2
  • L. Euler, Institutiones calculi differentialis, Imperial Academy of Sciences, St. Petersburg, 1755.
  • L. Euler, Opera Omnia (1) 10, Teubner, Leipzig and Berlin, 1913.
  • Heinz-Otto Peitgen, Hartmut JĂĽrgens, and Dietmar Saupe, Chaos and fractals, Springer-Verlag, New York, 1992. New frontiers of science; With a foreword by Mitchell J. Feigenbaum; Appendix A by Yuval Fisher; Appendix B by Carl J. G. Evertsz and Benoit B. Mandelbrot. MR 1185709, DOI 10.1007/978-1-4757-4740-9
  • Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
  • Jens Feder, Fractals, Physics of Solids and Liquids, Plenum Press, New York, 1988. With a foreword by Benoit B. Mandelbrot. MR 949210, DOI 10.1007/978-1-4899-2124-6
  • Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
  • Dan Flath and Rhodes Peele, Hausdorff dimension in Pascal’s triangle, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992) Kluwer Acad. Publ., Dordrecht, 1993, pp. 229–244. MR 1271363
  • U. Frisch and G. Parisi, On the singularity structure of fully developed turbulence, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, eds., North-Holland, New York, 1985, 84–88.
  • G. Frobenius, Ăśber matrizen aus nicht-negativen elementen, Sitzber. Kgl. Preuss. Akad. Wiss., 1912, 456–477.
  • C. F. Gauss, Summatio quarumdam serierum singularium. Comment. Soc. R. Scient. Gottingensis Rec. 1 (1811), reprinted in his Werke 2 (1863), 9–45.
  • J. Horn, Ăśber eine hypergeometrische Funktion zweier Veränderlichen, Monatsh. Math. Phys. 47 (1939), 359–379 (German). MR 91, DOI 10.1007/BF01695508
  • Peter Grassberger, Generalized dimensions of strange attractors, Phys. Lett. A 97 (1983), no. 6, 227–230. MR 718442, DOI 10.1016/0375-9601(83)90753-3
  • Fritz von Haeseler, Heinz-Otto Peitgen, and Gencho Skordev, Pascal’s triangle, dynamical systems and attractors, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 479–486. MR 1182659, DOI 10.1017/s0143385700006908
  • John H. Halton, On the divisibility properties of Fibonacci numbers, Fibonacci Quart. 4 (1966), 217–240. MR 201373
  • K. Hensel, Zahlentheorie, Göschen, Berlin, 1913.
  • H. G. E. Hentschel and Itamar Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Phys. D 8 (1983), no. 3, 435–444. MR 719636, DOI 10.1016/0167-2789(83)90235-X
  • Richard Holley and Edward C. Waymire, Multifractal dimensions and scaling exponents for strongly bounded random cascades, Ann. Appl. Probab. 2 (1992), no. 4, 819–845. MR 1189419
  • J. Holte, The dimension of the set of multinomial coefficients not divisible by n, Abstracts of the AMS 12, No. 1 (Jan. 1991), 21.
  • J. M. Holte, Carries, combinatorics, and an amazing matrix, Amer. Math. Monthly 104 (1997), 138–149.
  • M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia, and J. Stavans, Global universality at the onset of chaos: Results of a forced Rayleigh-BĂ©nard experiment, Phys. Rev. Lett. 55 (1985), 2798–2801.
  • Donald E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0286318
  • Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math. 396 (1989), 212–219. MR 988552, DOI 10.1515/crll.1989.396.212
  • Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, 2nd ed., Graduate Texts in Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR 754003, DOI 10.1007/978-1-4612-1112-9
  • E. E. Kummer, Ăśber die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93–146.
  • Calvin T. Long, Some divisibility properties of Pascal’s triangle, Fibonacci Quart. 19 (1981), no. 3, 257–263. MR 627400
  • E. Lucas, ThĂ©orie des fonctions numĂ©riques simplement pĂ©riodiques, Amer. J. Math. 1 (1878), 184–240.
  • B. B. Mandelbrot, Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence, in Statistical Models and Turbulence, M. Rosenblatt and C. Van Atta, eds., Lecture Notes in Physics 12, Springer-Verlag, New York, 1972, 333–351.
  • B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier, J. Fluid Mech. 62 (1974), 331–358.
  • Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe fĂĽr den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
  • H. D. Miller, A convexity property in the theory of random variables defined on a finite Markov chain, Ann. Math. Statist. 32 (1961), 1260–1270. MR 126886, DOI 10.1214/aoms/1177704865
  • G. Paladin and A. Vulpiani, Characterization of strange attractors as inhomogeneous fractals, Lett. Nuovo Cimento (2) 41 (1984), no. 3, 82–86. MR 770897, DOI 10.1007/BF02747515
  • O. Perron, Zur Theorie der Matrizen, Math. Ann. 64 (1907), 248–263.
  • A. M. Reiter, Determining the dimension of fractals generated by Pascal’s triangle, Westinghouse Science Talent Search 1990–1991 winning paper.
  • Ashley Melia Reiter, Determining the dimension of fractals generated by Pascal’s triangle, Fibonacci Quart. 31 (1993), no. 2, 112–120. MR 1214677
  • A. RĂ©nyi, Probability theory, North-Holland Series in Applied Mathematics and Mechanics, Vol. 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1970. Translated by LászlĂł Vekerdi. MR 0315747
  • Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
  • R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683, DOI 10.1515/9781400873173
  • E. Seneta, Nonnegative matrices and Markov chains, 2nd ed., Springer Series in Statistics, Springer-Verlag, New York, 1981. MR 719544, DOI 10.1007/0-387-32792-4
  • Marta Sved, Divisibility—with visibility, Math. Intelligencer 10 (1988), no. 2, 56–64. MR 932163, DOI 10.1007/BF03028359
  • W. SierpiĹ„ski, Sur une courbe dont tout point est un point de ramification, Comptes Rendus (Paris) 160 (1915), 302.
  • Josef Stoer and Christoph Witzgall, Convexity and optimization in finite dimensions. I, Die Grundlehren der mathematischen Wissenschaften, Band 163, Springer-Verlag, New York-Berlin, 1970. MR 0286498, DOI 10.1007/978-3-642-46216-0
  • James R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly 92 (1985), no. 10, 711–717. MR 820054, DOI 10.2307/2323222
  • W. A. Webb and D. L. Wells, Kummer’s Theorem, Cantor Bases, and Generalized Binomial Coefficients, preprint.
  • Diana L. Wells, The Fibonacci and Lucas triangles modulo $2$, Fibonacci Quart. 32 (1994), no. 2, 111–123. MR 1276376
  • Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
  • Stephen Wolfram, Geometry of binomial coefficients, Amer. Math. Monthly 91 (1984), no. 9, 566–571. MR 764797, DOI 10.2307/2323743
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 05A16, 11K16
  • Retrieve articles in all journals with MSC (1991): 05A16, 11K16
Additional Information
  • John M. Holte
  • Affiliation: Department of Mathematics, Gustavus Adolphus College, St. Peter, Minnesota 56082
  • Email: holte@gac.edu
  • Received by editor(s): December 8, 1995
  • Received by editor(s) in revised form: March 26, 1996
  • © Copyright 1997 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 349 (1997), 3837-3873
  • MSC (1991): Primary 05A16; Secondary 11K16
  • DOI: https://doi.org/10.1090/S0002-9947-97-01794-7
  • MathSciNet review: 1389778