The Szego curve, zero distribution and weighted approximation
HTML articles powered by AMS MathViewer
- by Igor E. Pritsker and Richard S. Varga
- Trans. Amer. Math. Soc. 349 (1997), 4085-4105
- DOI: https://doi.org/10.1090/S0002-9947-97-01889-8
- PDF | Request permission
Abstract:
In 1924, Szegő showed that the zeros of the normalized partial sums, $s_{n}(nz)$, of $e^{z}$ tended to what is now called the Szegő curve $S$, where \[ S:= \left \{ z \in {\mathbb {C}}:|ze^{1-z}|=1 \text { and } |z| \leq 1 \right \}. \] Using modern methods of weighted potential theory, these zero distribution results of Szegő can be essentially recovered, along with an asymptotic formula for the weighted partial sums $\{e^{-nz}s_{n} (nz)\}^{\infty }_{n=0}$. We show that $G:= {\operatorname {Int}} S$ is the largest universal domain such that the weighted polynomials $e^{-nz} P_{n}(z)$ are dense in the set of functions analytic in $G$. As an example of such results, it is shown that if $f(z)$ is analytic in $G$ and continuous on $\overline {G}$ with $f(1)=0$, then there is a sequence of polynomials $\left \{P_{n}(z)\right \}^{\infty }_{n=0}$, with $\deg P_{n} \leq n$, such that \[ \lim _{n \rightarrow \infty } \|e^{-nz} P_{n}(z)-f(z)\|_{\overline {G}} =0, \] where $\| \cdot \|_{\overline {G}}$ denotes the supremum norm on $\overline {G}$. Similar results are also derived for disks.References
- P. B. Borwein and Weiyu Chen, Incomplete rational approximation in the complex plane, Constr. Approx. 11 (1995), no. 1, 85–106. MR 1323965, DOI 10.1007/BF01294340
- J. D. Buckholtz, A characterization of the exponential series, Amer. Math. Monthly 73 (1966), no. 4, 121–123. MR 202979, DOI 10.2307/2313761
- R. S. Varga and A. J. Carpenter, Asymptotics for the zeros of the partial sums of $e^z$. II, Computational methods and function theory (ValparaĂso, 1989) Lecture Notes in Math., vol. 1435, Springer, Berlin, 1990, pp. 201–207. MR 1071774, DOI 10.1007/BFb0087909
- A. J. Carpenter, R. S. Varga, and J. Waldvogel, Asymptotics for the zeros of the partial sums of $e^z$. I, Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), 1991, pp. 99–120. MR 1113918, DOI 10.1216/rmjm/1181072998
- D. GaÄer, Lektsii po teorii approksimatsii v kompleksnoÄ oblasti, “Mir”, Moscow, 1986 (Russian). Translated from the German by L. M. Kartashov; Translation edited and with a preface by V. I. BelyÄ and P. M. Tamrazov. MR 894919
- Peter Henrici, Applied and computational complex analysis. Vol. 2, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR 0453984
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0
- G. G. Lorentz, Approximation by incomplete polynomials (problems and results), Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 289–302. MR 0467089
- H. N. Mhaskar and E. B. Saff, The distribution of zeros of asymptotically extremal polynomials, J. Approx. Theory 65 (1991), no. 3, 279–300. MR 1109409, DOI 10.1016/0021-9045(91)90093-P
- H. N. Mhaskar and E. B. Saff, Weighted analogues of capacity, transfinite diameter, and Chebyshev constant, Constr. Approx. 8 (1992), no. 1, 105–124. MR 1142697, DOI 10.1007/BF01208909
- E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Heidelberg, 1997.
- G. Szegő, Über eine Eigenshaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges. 23 (1924), 50–64.
- Vilmos Totik, Weighted approximation with varying weight, Lecture Notes in Mathematics, vol. 1569, Springer-Verlag, Berlin, 1994. MR 1290789, DOI 10.1007/BFb0076133
- K. A. Hirsch, On skew-groups, Proc. London Math. Soc. 45 (1939), 357–368. MR 0000036, DOI 10.1112/plms/s2-45.1.357
Bibliographic Information
- Igor E. Pritsker
- Affiliation: Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242
- MR Author ID: 319712
- Email: pritsker@mcs.kent.edu
- Richard S. Varga
- Affiliation: Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242
- Email: varga@mcs.kent.edu
- Received by editor(s): March 30, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 4085-4105
- MSC (1991): Primary 30E10; Secondary 30C15, 31A15, 41A30
- DOI: https://doi.org/10.1090/S0002-9947-97-01889-8
- MathSciNet review: 1407500