Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Szego curve, zero distribution and weighted approximation


Authors: Igor E. Pritsker and Richard S. Varga
Journal: Trans. Amer. Math. Soc. 349 (1997), 4085-4105
MSC (1991): Primary 30E10; Secondary 30C15, 31A15, 41A30
DOI: https://doi.org/10.1090/S0002-9947-97-01889-8
MathSciNet review: 1407500
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In 1924, Szegő showed that the zeros of the normalized partial sums, $s_{n}(nz)$, of $e^{z}$ tended to what is now called the Szegő curve $S$, where \[ S:= \left \{ z \in {\mathbb {C}}:|ze^{1-z}|=1 \text { and } |z| \leq 1 \right \}. \] Using modern methods of weighted potential theory, these zero distribution results of Szegő can be essentially recovered, along with an asymptotic formula for the weighted partial sums $\{e^{-nz}s_{n} (nz)\}^{\infty }_{n=0}$. We show that $G:= {\operatorname {Int}} S$ is the largest universal domain such that the weighted polynomials $e^{-nz} P_{n}(z)$ are dense in the set of functions analytic in $G$. As an example of such results, it is shown that if $f(z)$ is analytic in $G$ and continuous on $\overline {G}$ with $f(1)=0$, then there is a sequence of polynomials $\left \{P_{n}(z)\right \}^{\infty }_{n=0}$, with $\deg P_{n} \leq n$, such that \[ \lim _{n \rightarrow \infty } \|e^{-nz} P_{n}(z)-f(z)\|_{\overline {G}} =0, \] where $\| \cdot \|_{\overline {G}}$ denotes the supremum norm on $\overline {G}$. Similar results are also derived for disks.


References [Enhancements On Off] (What's this?)

  • P. B. Borwein and Weiyu Chen, Incomplete rational approximation in the complex plane, Constr. Approx. 11 (1995), no. 1, 85–106. MR 1323965, DOI https://doi.org/10.1007/BF01294340
  • J. D. Buckholtz, A characterization of the exponential series, Amer. Math. Monthly 73 (1966), no. 4, 121–123. MR 202979, DOI https://doi.org/10.2307/2313761
  • R. S. Varga and A. J. Carpenter, Asymptotics for the zeros of the partial sums of $e^z$. II, Computational methods and function theory (ValparaĂ­so, 1989) Lecture Notes in Math., vol. 1435, Springer, Berlin, 1990, pp. 201–207. MR 1071774, DOI https://doi.org/10.1007/BFb0087909
  • A. J. Carpenter, R. S. Varga, and J. Waldvogel, Asymptotics for the zeros of the partial sums of $e^z$. I, Proceedings of the U.S.-Western Europe Regional Conference on PadĂ© Approximants and Related Topics (Boulder, CO, 1988), 1991, pp. 99–120. MR 1113918, DOI https://doi.org/10.1216/rmjm/1181072998
  • D. GaÄ­er, Lektsii po teorii approksimatsii v kompleksnoÄ­ oblasti, “Mir”, Moscow, 1986 (Russian). Translated from the German by L. M. Kartashov; Translation edited and with a preface by V. I. BelyÄ­ and P. M. Tamrazov. MR 894919
  • Peter Henrici, Applied and computational complex analysis. Vol. 2, Wiley Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR 0453984
  • N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027
  • G. G. Lorentz, Approximation by incomplete polynomials (problems and results), PadĂ© and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 289–302. MR 0467089
  • H. N. Mhaskar and E. B. Saff, The distribution of zeros of asymptotically extremal polynomials, J. Approx. Theory 65 (1991), no. 3, 279–300. MR 1109409, DOI https://doi.org/10.1016/0021-9045%2891%2990093-P
  • H. N. Mhaskar and E. B. Saff, Weighted analogues of capacity, transfinite diameter, and Chebyshev constant, Constr. Approx. 8 (1992), no. 1, 105–124. MR 1142697, DOI https://doi.org/10.1007/BF01208909
  • E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Heidelberg, 1997.
  • G. SzegĹ‘, Ăśber eine Eigenshaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges. 23 (1924), 50–64.
  • Vilmos Totik, Weighted approximation with varying weight, Lecture Notes in Mathematics, vol. 1569, Springer-Verlag, Berlin, 1994. MR 1290789
  • J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Colloquium Publications, vol. 20, Amer. Math. Soc., Providence, 1969.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 30E10, 30C15, 31A15, 41A30

Retrieve articles in all journals with MSC (1991): 30E10, 30C15, 31A15, 41A30


Additional Information

Igor E. Pritsker
Affiliation: Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242
MR Author ID: 319712
Email: pritsker@mcs.kent.edu

Richard S. Varga
Affiliation: Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242
Email: varga@mcs.kent.edu

Keywords: Szegő curve, weighted polynomials, weighted energy problem, extremal measure, logarithmic potential, balayage, modified Robin constant
Received by editor(s): March 30, 1996
Article copyright: © Copyright 1997 American Mathematical Society