A hypergeometric function approach to the persistence problem of single sine-Gordon breathers
HTML articles powered by AMS MathViewer
- by Jochen Denzler
- Trans. Amer. Math. Soc. 349 (1997), 4053-4083
- DOI: https://doi.org/10.1090/S0002-9947-97-01951-X
- PDF | Request permission
Abstract:
It is shown that for an interesting class of perturbation functions, at most one of the continuum of sine-Gordon breathers can persist for the perturbed equation. This question is much more subtle than the question of persistence of large portions of the family, because analytic continuation arguments in the amplitude parameter are no longer available. Instead, an asymptotic analysis of the obstructions to persistence for large Fourier orders is made, and it is connected to the asymptotic behaviour of the Taylor coefficients of the perturbation function by means of an inverse Laplace transform and an integral transform whose kernel involves hypergeometric functions in a way that is degenerate in that asymptotic analysis involves a splitting monkey saddle. Only first order perturbation theory enters into the argument. The reasoning can in principle be carried over to other perturbation functions than the ones considered here.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966. MR 0208797
- Björn Birnir, Henry P. McKean, and Alan Weinstein, The rigidity of sine-Gordon breathers, Comm. Pure Appl. Math. 47 (1994), no. 8, 1043–1051. MR 1288631, DOI 10.1002/cpa.3160470803
- Norman Bleistein, Uniform asymptotic expansions of integrals with stationary point near algebraic singularity, Comm. Pure Appl. Math. 19 (1966), 353–370. MR 204943, DOI 10.1002/cpa.3160190403
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- J. Denzler: Nonpersistence of Breathers for the Perturbed Sine Gordon Equation, PhD thesis number 9954, ETH Zürich, Switzerland, 1992. Copy available from the author
- Jochen Denzler, Nonpersistence of breather families for the perturbed sine Gordon equation, Comm. Math. Phys. 158 (1993), no. 2, 397–430. MR 1249601, DOI 10.1007/BF02108081
- Jochen Denzler, Second order nonpersistence of the sine-Gordon breather under an exceptional perturbation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 12 (1995), no. 2, 201–239. MR 1326668, DOI 10.1016/S0294-1449(16)30164-0
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- B. Friedman, Stationary phase with neighboring critical points, J. Soc. Indust. Appl. Math. 7 (1959), 280–289. MR 109272, DOI 10.1137/0107021
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York-London, 1965. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Ceĭtlin; Translated from the Russian by Scripta Technica, Inc; Translation edited by Alan Jeffrey. MR 0197789
- N. Hayek, B. J. González, and E. R. Negrín, Abelian theorems for the index ${}_2\!F_1$-transform, Rev. Técn. Fac. Ingr. Univ. Zulia 15 (1992), no. 3, 167–171 (English, with English and Spanish summaries). MR 1201579
- Ch. Müntz: Über den Approximationssatz von Weierstraß; in: Mathematische Abhandlungen, Hermann Amandus Schwarz zu seinem fünzigjährigen Doktorjubiläum, Springer 1914
- O. Perron: Über die näherungsweise Berechnung von Funktionen großer Zahlen, Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften, Mathematisch–Naturwissenschaftliche Klasse (1917), 191–219
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- H. M. Srivastava and R. G. Buschman, Convolution integral equations with special function kernels, John Wiley & Sons, New York-London-Sydney, 1977. MR 0622411
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Jet Wimp, A class of integral transforms, Proc. Edinburgh Math. Soc. (2) 14 (1964/65), 33–40. MR 164204, DOI 10.1017/S0013091500011202
- S. B. Yakubovich, V. Kim Tuan, O. I. Marichev, and S. L. Kalla, A class of index integral transforms, Rev. Técn. Fac. Ingr. Univ. Zulia 10 (1987), no. 1, 105–118 (English, with Spanish summary). MR 902326
Bibliographic Information
- Jochen Denzler
- Affiliation: Mathematisches Institut, Ludwig–Maximilians–Universität, Theresienstraße 39, D–80333 München, Germany; Lefschetz Center of Dynamical Systems, Brown University, Providence, RI 02906
- MR Author ID: 250152
- Email: denzler@rz.mathematik.uni-muenchen.de
- Received by editor(s): October 18, 1995
- Received by editor(s) in revised form: March 25, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 4053-4083
- MSC (1991): Primary 35Q53; Secondary 33C05, 35B10, 44A10
- DOI: https://doi.org/10.1090/S0002-9947-97-01951-X
- MathSciNet review: 1422601