Contractions on a manifold polarized by an ample vector bundle
HTML articles powered by AMS MathViewer
- by Marco Andreatta and Massimiliano Mella
- Trans. Amer. Math. Soc. 349 (1997), 4669-4683
- DOI: https://doi.org/10.1090/S0002-9947-97-01832-1
- PDF | Request permission
Abstract:
A complex manifold $X$ of dimension $n$ together with an ample vector bundle $E$ on it will be called a generalized polarized variety. The adjoint bundle of the pair $(X,E)$ is the line bundle $K_X + det(E)$. We study the positivity (the nefness or ampleness) of the adjoint bundle in the case $r := rank (E) = (n-2)$. If $r\geq (n-1)$ this was previously done in a series of papers by Ye and Zhang, by Fujita, and by Andreatta, Ballico and Wisniewski.
If $K_X+detE$ is nef then, by the Kawamata-Shokurov base point free theorem, it supports a contraction; i.e. a map $\pi :X \longrightarrow W$ from $X$ onto a normal projective variety $W$ with connected fiber and such that $K_X + det(E) = \pi ^*H$, for some ample line bundle $H$ on $W$. We describe those contractions for which $dimF \leq (r-1)$. We extend this result to the case in which $X$ has log terminal singularities. In particular this gives Mukai’s conjecture 1 for singular varieties. We consider also the case in which $dimF = r$ for every fiber and $\pi$ is birational.
References
- Marco Andreatta, Contractions of Gorenstein polarized varieties with high nef value, Math. Ann. 300 (1994), no. 4, 669–679. MR 1314741, DOI 10.1007/BF01450508
- Andreatta, M., Ballico, E., Wiśniewski, J.A., On contractions of smooth algebraic varieties, preprint UTM 344 (1991).
- M. Andreatta, E. Ballico, and J. Wiśniewski, Vector bundles and adjunction, Internat. J. Math. 3 (1992), no. 3, 331–340. MR 1163727, DOI 10.1142/S0129167X92000114
- M. Andreatta and J. A. Wiśniewski, A note on nonvanishing and applications, Duke Math. J. 72 (1993), no. 3, 739–755. MR 1253623, DOI 10.1215/S0012-7094-93-07228-6
- Mauro C. Beltrametti and Andrew J. Sommese, On the adjunction-theoretic classification of polarized varieties, J. Reine Angew. Math. 427 (1992), 157–192. MR 1162435, DOI 10.1515/crll.1992.427.157
- Takao Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 167–178. MR 946238, DOI 10.2969/aspm/01010167
- Takao Fujita, On adjoint bundles of ample vector bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 105–112. MR 1178722, DOI 10.1007/BFb0094513
- Takao Fujita, On Kodaira energy and adjoint reduction of polarized manifolds, Manuscripta Math. 76 (1992), no. 1, 59–84. MR 1171156, DOI 10.1007/BF02567747
- Paltin Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 3, 457–472. MR 830359, DOI 10.1017/S0305004100064409
- Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243, DOI 10.2969/aspm/01010283
- Maeda, H. Nefness of adjoint bundles for ample vector bundles, Le Matematiche (Catania) 50 (1995), 73-82.
- Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, DOI 10.2307/1971241
- Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, DOI 10.2307/2007050
- Mukai, S. Problems on characterizations of complex projective space, Birational Geometry of Algebraic Varieties - Open Problems, Katata, Japan (1988), 57-60.
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- Thomas Peternell, MichałSzurek, and Jarosław A. Wiśniewski, Fano manifolds and vector bundles, Math. Ann. 294 (1992), no. 1, 151–165. MR 1180456, DOI 10.1007/BF01934319
- Andrew John Sommese, On the adjunction theoretic structure of projective varieties, Complex analysis and algebraic geometry (Göttingen, 1985) Lecture Notes in Math., vol. 1194, Springer, Berlin, 1986, pp. 175–213. MR 855885, DOI 10.1007/BFb0077004
- Jarosław A. Wiśniewski, On a conjecture of Mukai, Manuscripta Math. 68 (1990), no. 2, 135–141. MR 1063222, DOI 10.1007/BF02568756
- Jarosław A. Wiśniewski, Length of extremal rays and generalized adjunction, Math. Z. 200 (1989), no. 3, 409–427. MR 978600, DOI 10.1007/BF01215656
- Jarosław A. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math. 417 (1991), 141–157. MR 1103910, DOI 10.1515/crll.1991.417.141
- Yun-Gang Ye and Qi Zhang, On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J. 60 (1990), no. 3, 671–687. MR 1054530, DOI 10.1215/S0012-7094-90-06027-2
- Qi Zhang, A theorem on the adjoint system for vector bundles, Manuscripta Math. 70 (1991), no. 2, 189–201. MR 1085632, DOI 10.1007/BF02568370
- Qi Zhang, Ample vector bundles on singular varieties, Math. Z. 220 (1995), no. 1, 59–64. MR 1347157, DOI 10.1007/BF02572602
Bibliographic Information
- Marco Andreatta
- Affiliation: Dipartimento di Matematica,Universitá di Trento, 38050 Povo (TN), Italia
- Email: andreatt@science.unitn.it
- Massimiliano Mella
- Affiliation: Dipartimento di Matematica,Universitá di Trento, 38050 Povo (TN), Italia
- Email: mella@science.unitn.it
- Received by editor(s): March 11, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 4669-4683
- MSC (1991): Primary 14E30, 14J40; Secondary 14C20, 14J45
- DOI: https://doi.org/10.1090/S0002-9947-97-01832-1
- MathSciNet review: 1401760