ORDER EVALUATION OF PRODUCTS OF SUBSETS IN
FINITE GROUPS AND ITS APPLICATIONS. II

Z. ARAD AND M. MUZYCHUK

Abstract. In this paper we give a new estimate of the cardinality of the
product of subsets AB in a finite non-abelian simple group, where A is normal
and B is arbitrary. This estimate improves the one given in J. Algebra 182

1. Introduction

This paper is a continuation of [2], where the following question was considered.
Given a finite group G and two arbitrary subsets $S, T \subset G$, how large may their
product TS be, provided that $TS \neq G$?

In [2] the survey of related results was presented. In particular, we proved that
if S is a normal subset, $|S| > 1$, and G is finite non-abelian simple, then $ST \neq G$
yields that $|ST| \geq |S| + |T| - 1$. Furthermore, the equality $|ST| = |S| + |T| - 1$
holds if and only if either $|T| = 1$ or $T = S^{-1} g$, where S denotes the complement
to S in G.

As it was illustrated in [2], the above-mentioned result implies various interesting
applications which were stated there.

The purpose of this paper is to present a better estimation for $|AB|$. More
precisely, the main result of the paper is

Theorem 1.1. Let G be a finite non-abelian simple group. Denote by l
the minimal cardinality of non-trivial conjugacy classes of G. Then for each normal $A \subset G$, such
that $1 < |A| \leq |G|/4$ and for any $B \subset G$,

$$|B| \geq 2, \quad |AB| \leq |G| - 2 \Rightarrow |AB| \geq |A| + |B| + (l - 18)/12.$$

In particular, if A is a non-trivial conjugacy class, then either $|C_G(a)| = 3, a \in A$, or
the assumption $|A| \leq |G|/4$ holds by the simplicity of G. Non-abelian simple
groups G with self-centralizing subgroup of order 3 are A_5 and $PSL(2,7)$ by [5]. If
$G = A_5$, then $l = 12$ and Theorem 1.1 holds by [2]. If $G = PSL(2,7)$, then $l = 21$
and $|A| = 56$. Here also one can prove that Theorem 1.1 holds. Therefore, if A is a
non-trivial conjugacy class of G, then the assumption $|A| \leq |G|/4$ may be omitted.

Received by the editors September 25, 1995.

1991 Mathematics Subject Classification. Primary 20D99, 05A99; Secondary 05C25.

This work was done at the Gelbart and Emmy Noether Research Institutes for Mathematical
Sciences at Bar-Ilan University.

The second author was supported by the research grants from the Israeli Ministry of Science
and the German-Israeli Foundation for fundamental research.

©1997 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
As an application of Theorem 1.1 we prove

Theorem 1.2. Let G be a finite non-abelian simple group. Then for each normal $A \subset G$, such that $1 < |A| \leq |G|/4$ and for any $B \subset G$, it holds that
\[|B| \geq 2, |AB| \leq |G| - 2 \Rightarrow |AB| \geq |A| + |B| + 3. \]

As a direct consequence we obtain the following omnibus theorem:

Theorem 1.3. Let G be a finite non-abelian group with k conjugacy classes and $\text{Cla}(G)^\#$ be the set of its non-trivial conjugacy classes. Then G is not simple if one of the following holds:
1) $CD \subseteq C \cup D$ for some $C, D \in \text{Cla}(G)^\#$;
2) $CD \subseteq C^{-1} \cup D$ for some $C, D \in \text{Cla}(G)^\#$;
3) $CD \subseteq C^{-1} \cup D^{-1}$ for some $C, D \in \text{Cla}(G)^\#$;
4) $\prod_{B \in B} B \subseteq \bigcup_{B \in B} B \cup \{1\}$ for some $B \subset \text{Cla}(G)^\#$;
5) there exist $A, B \subset \text{Cla}(G)^\#$ such that
\[\prod_{A \in A} A \subseteq \bigcup_{B \in B} B \cup \{1\}, \]
\[\prod_{B \in B} B \subseteq \bigcup_{A \in A} A \cup \{1\}. \]
6) $CC^{-1} \subseteq C \cup C^{-1} \cup \{1\}$ for some $C \in \text{Cla}(G)^\#$;
7) $C^2 \subseteq C \cup C^{-1}$ for some $C \in \text{Cla}(G)^\#$;
8) $C^2 \subseteq \{1\} \cup D \cup D^{-1}$ for some $C, D \in \text{Cla}(G)^\#$;
9) $\prod_{C \in \text{Cla}(G)^\#} C \neq G$;
10) $|\prod_{C \in \text{Cla}(G)^\# \backslash \{D\}} C| < |G| - 1$, where $D \in \text{Cla}(G)^\#$ is a conjugacy class of minimal cardinality;
11) if $|C| \geq |G|/k - 2, k > 6, C \in \text{Cla}(G)^\#$ and $C^k \neq G$.

Parts 1) and 2) are known by [1]. Parts 3)-5), 7)-9) and 11) were open problems; a few of them were mentioned in [1]. Part 6) was proved in [1] by using CFSG. Part 9) is known due to R. Brauer (see [4]). The detailed structure of G satisfying part 1) is known by [1]. In [1] it was shown that there is no finite group satisfying part 2).\(^1\)

Further research is needed for a better understanding of the structure of G satisfying parts 3)-11).

2. Preliminaries

Let $A \subset G$ be a subset of a group G. In what follows we use \overline{A} for $G \setminus A$. For an integer i we define
\[S_i(A) = \{ B \subset G \mid |B| > i \text{ and } |\overline{AB}| > i \}; \]
\[\omega_i(A) = \min \{|AB| - |B| \mid B \in S_i(A)\}; \]
\[\mathcal{E}_i(A) = \{ B \in S_i(A) \mid |AB| = |B| + \omega_i(A) \}. \]

Since $S_i(A) \subseteq S_j(A)$ when $i \leq j$, $\omega_i(A)$ is a non-decreasing function of i.

Proposition 2.1. Let $X, Y \in \mathcal{E}_i(A)$ and $|X \cap Y| > i, |\overline{AX} \cup \overline{AY}| > i$. Then $X \cap Y, X \cup Y \in \mathcal{E}_i(A)$.

\(^1\)Character theorems dual to parts 7) and 8) were considered in [7].
Proof. The identity

\[|AX \cup AY| + |AX \cap AY| = |AX| + |AY| \]

implies

(1) \[|A(X \cup Y)| + |A(X \cap Y)| \leq |AX| + |AY| = |X| + |Y| + 2\omega_i(A). \]

The inequalities \(|X \cap Y| > i, |AX \cup AY| > i\) guarantee that \(X \cap Y, X \cup Y \in \mathcal{S}_i(A)\). Therefore,

\[|A(X \cup Y)| + |A(X \cap Y)| \geq |X \cup Y| + |X \cap Y| + 2\omega_i(A) = |X| + |Y| + 2\omega_i(A). \]

Combining this with (1) yields

\[|A(X \cup Y)| = |X \cup Y| + \omega_i(A), \]
\[|A(X \cap Y)| = |X \cap Y| + \omega_i(A), \]

as claimed. ◊

Proposition 2.2. (i) \(\omega_i(A) = \omega_i(A^{-1})\);
(ii) \(B \in \mathcal{E}_i(A) \Rightarrow A^{-1}(\overline{AB}) = \overline{B} \) and, consequently, \(\overline{AB} \in \mathcal{E}_i(A^{-1})\);
(iii) \(B \in \mathcal{E}_i(A) \Leftrightarrow Bg \in \mathcal{E}_i(A) \) for each \(g \in G\);
(iv) if \(A\) is normal, then

\[B \in \mathcal{E}_i(A) \Rightarrow A(\overline{AB}^{-1}) = \overline{B}^{-1}, \text{ and, consequently, } \overline{AB}^{-1} \in \mathcal{E}_i(A), \]

\[B \in \mathcal{E}_i(A) \Leftrightarrow gBh \in \mathcal{E}_i(A) \text{ for any } g, h \in G. \]

Proof. (i) It is sufficient to show that \(\omega_i(A^{-1}) \leq \omega_i(A)\). Take an arbitrary \(B \in \mathcal{E}_i(A)\). Then \(|AB| = |B| + \omega_i(A)|. If \(g \in \overline{AB}\), then \(A^{-1}g \cap B = \emptyset\), implying \(A^{-1}(\overline{AB}) \subset \overline{B}\). Thus \(|AB| > i < |B| \leq |A^{-1}(\overline{AB})|\). Therefore \(\overline{AB} \in \mathcal{S}_i(A^{-1})\), which implies

\[|B| \geq |A^{-1}(\overline{AB})| \geq \omega_i(A^{-1}) + |\overline{AB}| = \omega_i(A^{-1}) + |G| - |AB| \]
\[= \omega_i(A^{-1}) + |G| - |B| - \omega_i(A) = \omega_i(A^{-1}) + |\overline{B}| - \omega_i(A). \]

(ii) Since \(\omega_i(A) = \omega_i(A^{-1})\), the inequality (2) implies

\[|G| - |B| \geq |A^{-1}(\overline{AB})| \geq |G| - |B|. \]

Therefore, \(|A^{-1}(\overline{AB})| = |\overline{B}|\). Combining this with an inclusion \(A^{-1}(\overline{AB}) \subset \overline{B}\) yields \(A^{-1}(\overline{AB}) = \overline{B}\). Now the inclusion \(\overline{AB} \in \mathcal{E}_i(A^{-1})\) easily follows from the following sequence of equalities:

\[|A^{-1}(\overline{AB})| = |\overline{B}| = |G| - |B| = |AB| + |\overline{AB}| - |B| \]
\[= \omega_i(A) + |\overline{AB}| = \omega_i(A^{-1}) + |\overline{AB}|. \]

Proof of (iii) is a trivial exercise. Part (iv) is a direct consequence of (ii)-(iii) and normality of \(A\). ◊
3. Estimation of $\omega_1(A)$ of a normal subset $A \subset G$

In what follows, we assume that $A \subset G$, $A \neq G$ is normal and $S_1(A) \neq \emptyset$. It is easy to see that $S_1(A) \neq \emptyset$ if and only if there exists $b \in G^\#$ with $|A \{1, b\}| \leq |G| - 2$. Denoting by $m(A)$ the minimal value of $|Ag \cup A| - |A|$, $g \in G^\#$, we can say that $S_1(A) \neq \emptyset$ if and only if $m(A) + |A| \leq |G| - 2$. Since $m(A) \leq |A|$, the latter inequality always holds in the case of $2|A| + 2 \leq |G|$. If $m(A) = 0$, then a subgroup $Sta(A) = \{g \in G \mid gA = A\}$ is a non-trivial proper normal subgroup of G. The parameter $m(A)$ gives us an upper bound for $\omega_1(A)$. Indeed, $|A \{1, b\}| \geq \omega_1(A) + 2$ whenever $1 \neq b$ and $|A \{1, b\}| \leq |G| - 2$. Therefore

$$(3) \quad m(A) - 2 \geq \omega_1(A) - |A|.$$

Moreover the equality case in (3) holds if and only if $E_1(A)$ contains a subset with two elements.

In this section we study the situation where $E_1(A)$ contains no 2-element subset, or, equivalently, $m(A) - 2 > \omega_1(A) - |A|$. The main result may be formulated as follows:

Theorem 3.1. Let $A \subset G$ be a normal subset of a finite group G with $S_1(A) \neq \emptyset$ and $\omega_1(A) - |A| < m(A) - 2$. Let $B \in E_1(A)$ be of minimal cardinality such that $1 \in B$. If $|B| > \omega_1(A) - |A| + 3$, then B is a subgroup of G such that $[G : N_G(B)] \leq 2$.

As a direct consequence, we obtain the following two results.

Theorem 3.2. Let $A \subset G$ be a normal subset such that $S_1(A) \neq \emptyset$. Assume that $\omega_1(A) - |A| < (m(A) - 3)/2$. Then there exists a proper subgroup $H \subset G$ such that $[G : N_G(H)] \leq 2$ and $|AH| = \omega_1(A) + |H|$.

Theorem 3.3. Let G be a non-abelian finite simple group. Let $A \subset G$ be an arbitrary normal subset of G such that $S_1(A) \neq \emptyset$. Then

$$|B| \geq 2, \quad |G| - 2 \geq |AB| \Rightarrow |AB| \geq |A| + |B| + \frac{m(A) - 3}{2}$$

holds for any $B \subset G$.

The rest of this section contains the proof of Theorem 3.1. Thus we always assume that $S_1(A) \neq \emptyset$ and $m(A) - 2 > \omega_1(A) - |A|$. The following notation will be used throughout the section:

- $k := \omega_1(A) - |A|$;
- $B \in E_1(A)$ is of minimal cardinality, $m := |B|$, $m > 2$;
- $C := AB, n := |C|$.

We always have

$$(4) \quad |G| = \omega_1(A) + m + n \Leftrightarrow |G| = |A| + k + m + n.$$

According to Proposition 2.2 (iv), $C^{-1} \in E_1(A)$. Therefore $n \geq m \geq 3$.

Lemma 3.1. Let $B_1, B_2 \in E_1(A)$ and $|B_1| = |B_2| = m$. Write $AB_i = C_i, i = 1, 2$.

Then

(i) $|B_1 \cap B_2| \in \{0, 1, m\}$;

(ii) either $|B_1 \cap C_2^{-1}| = |B_2 \cap C_1^{-1}| = m$, or $|B_1 \cap C_2^{-1}| \leq 1 \geq |B_2 \cap C_1^{-1}|$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. (i) Assume the contrary, i.e., $1 < |B_1 \cap B_2| < m$. Then

$$|A(B_1 \cup B_2)| + |A(B_1 \cap B_2)| \leq |AB_1 \cup AB_2| + |AB_1 \cap AB_2|$$

$$= |AB_1| + |AB_2| = 2\omega_1(A) + 2|B|.$$

Since $|B_1 \cap B_2| > 1$, $|A(B_1 \cap B_2)| \geq \omega_1(A) + |B_1 \cap B_2|$, implying

$$|A(B_1 \cup B_2)| \leq 2\omega_1(A) + 2|B| - |A(B_1 \cap B_2)|$$

$$\leq \omega_1(A) + 2|B| - |B_1 \cap B_2| \leq \omega_1(A) + 2m - 2 \leq \omega_1(A) + m + n - 2 = |G| - 2.$$

Thus, $|B_1 \cap B_2| > 1 < |A(B_1 \cup B_2)|$, and, by Proposition 2.1, $B_1 \cap B_2 \in \mathcal{E}_1(A)$ contrary to a minimality of B.

(ii) Assume that at least one of the inequalities

$$|B_1 \cap C_2^{-1}| \leq 1,$$

$$|B_2 \cap C_1^{-1}| \leq 1$$

does not hold. WLOG $|B_1 \cap C_2^{-1}| > 1$. Since $B_1 \in \mathcal{S}_1(A)$ and $|B_1 \cap C_2^{-1}| > 1$, $B_1 \cap C_2^{-1} \in \mathcal{S}_1(A)$, which, in turn, implies

$$(5) \quad |A(B_1 \cap C_2^{-1})| \geq \omega_1(A) + |B_1 \cap C_2^{-1}|.$$

On the other hand,

$$|A(B_1 \cap C_2^{-1})| \leq |AB_1 \cap AC_2^{-1}| = |AB_1| + |AC_2^{-1}| - |A(B_1 \cup C_2^{-1})|.$$

Since $AC_2^{-1} = B_2^{-1}$, $i = 1, 2$, the right part of the above inequality may be rewritten as follows:

$$|AB_1| + |AC_2^{-1}| - |A(B_1 \cup C_2^{-1})|$$

$$= \omega_1(A) + |B_1| + \omega_1(A) + |C_2| - |C_1 \cup B_2^{-1}|$$

$$= |G| + \omega_1(A) - |C_1 \cap B_2^{-1}|$$

$$= \omega_1(A) + |C_1 \cap B_2^{-1}|.$$

Comparing (5) and (6) gives us

$$1 < |B_1 \cap C_2^{-1}| \leq |C_1 \cap B_2^{-1}| = |B_2 \cap C_1^{-1}|.$$

Applying the same arguments to $B_2 \cap C_1^{-1}$, we obtain the inverse inequality which yields

$$|B_1 \cap C_2^{-1}| = |B_2 \cap C_1^{-1}| > 1.$$

Now we have

$$|AC_1^{-1} \cup AB_2| = |B_1^{-1} \cup C_2| = |B_1^{-1} \cap C_2| = |G| - |B_1^{-1} \cap C_2| \leq |G| - 2.$$

Thus $|C_1^{-1} \cap B_2| > 1 < |A(C_1^{-1} \cap B_2)|$, whence, by Proposition 2.1, $C_1^{-1} \cap B_2 \in \mathcal{E}_1(A)$.

Since B_2 has a minimal cardinality among the elements of $\mathcal{E}_1(A)$, $|C_1^{-1} \cap B_2| = |B_2|$, thus finishing the proof. \hfill \Box

Corollary 3.2. Let $B \in \mathcal{E}_1(A)$ with $|B| = m$. Then

(i) for any $x, y \in G$, $|B \cap B x y| \in \{0, 1, |B|\}$;

(ii) if $1 \in B$, then either B is a subgroup of G or $|gB \cap B| \leq 1 \geq |B y \cap B|$ holds for each $g \in G$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 3.3. If $|Bg \cap B| > 1$ for some $g \in G \setminus \{1\}$ (the case when $|gB \cap B| > 1$ is considered analogously). Then $Bg \in E_1(A)$ and by Lemma 3.1 $|Bg \cap B| = |B|$, or, equivalently, $Bg = B$. Thus B is a union of the left cosets of the cyclic subgroup $\langle g \rangle$. This implies that $xB \cap B$ is a union of the left $\langle g \rangle$-cosets as well. In particular, $|xB \cap B|$ is divisible by the order $o(g)$ of g. On the other hand, $|xB \cap B| \in \{0, 1, |B|\}$ for all $x \in G$. Therefore $|xB \cap B| \in \{0, |B|\}$ for an arbitrary $x \in G$. That means $xB \cap B$ is either \emptyset or B. Since $1 \in B$, B is a subgroup of G. \hfill \Box

The latter statement makes it reasonable to split the general case into two subcases, depending on whether B is a subgroup or not.

3.1. B is not a subgroup of G. In this section we show that, under the assumptions of Theorem 3.1, B should be a subgroup of G. In fact, we prove a stronger result.

Lemma 3.3. If B is not a subgroup of G and $1 \in B$, then

$$\frac{m(m-3)}{2} \leq k.$$

Write $AB = \overline{C}$, where $|B| = m, |C| = n$. For every $c \in C$ we have

$$AB = \overline{C}, \quad ABC^{-1} = \overline{C^{-1}}.$$

By applying Lemma 3.1, part (ii), we obtain that either

$$|B \cap (Cc)^{-1}| = |Bc^{-1} \cap C^{-1}| = |B|,$$

or

$$|B \cap (Cc^{-1})^{-1}| \leq 1 \geq |Bc^{-1} \cap C^{-1}|.$$

Since $1 \in B$ and $c \in C$, either

(7) $$C^{-1}c \supset B \subset cC^{-1},$$

or

(8) $$C^{-1}c \cap B = B \cap cC^{-1} = \{1\}.$$

Let C_1 be a set of those $c \in C$ satisfying (8) and C_2 be a set of those $c \in C$ satisfying (7). Clearly $C = C_1 \cup C_2$ and $C_1 \cap C_2 = \emptyset$.

Proposition 3.4. $|C_1| \geq m - 1$.

Proof. Assume the contrary, i.e. $|C_1| \leq m - 2$. Then $|C_2| = |C| - |C_1| = n - |C_1| \geq 2$.

As follows from (7)

$$B^{-1}C_2 \subset C \supset C_2B^{-1}.$$

This yields $Cb \supset C_2$ for each $b \in B$, whence

$$|ABB| = |\bigcup_{b \in B} Abb| = |\bigcup_{b \in B} \overline{Cb}| = |\bigcap_{b \in B} Cb| \leq |C_2| \leq |G| - 2.$$

Therefore $B^2 \in S_1(A)$, whence

(9) $$|AB^2| \geq \omega_1(A) + |B^2|.$$
On the other hand,
\[|AB^2| \leq |C_2| = |G| - |C| + |C_1| \]
\[= |G| - n + |C_1| \leq |G| - n + m - 2 = \omega_1(A) + 2m - 2. \]

Thus
\[\omega_1(A) + |B^2| \leq \omega_1(A) + 2m - 2, \]
whence
\[|B^2| \leq 2|B| - 2. \]

But now \(|B^2| \geq |B \cup Bb| = 2|B| - 1\) yields a contradiction (\(B\) is not a subgroup, so \(b \neq 1 \Rightarrow |B \cup Bb| = 2|B| - 1\)).

\[\Box \]

Proof of Lemma 3.3. We have two equalities:
\[ABc^{-1} = Cc^{-1}, \quad c \in C, \]
\[AC^{-1} = B^{-1}. \]

Therefore,
\[A(C^{-1} \cup BC_1^{-1}) = AC^{-1} \cup (\bigcup_{c \in C_1} ABc^{-1}) = B^{-1} \cup (\bigcup_{c \in C_1} Cc^{-1}) \]
\[= B^{-1} \cap (\bigcap_{c \in C_1} Cc^{-1}) \subset G \setminus \{1\}. \]

This implies
\[BC_1^{-1} \cup C^{-1} \subset A^{-1}, \]
whence
\[(10) \quad |BC_1^{-1} \cup C^{-1}| \leq |G| - |A| = k + m + n. \]

By definition of \(C_1\):
\[Bc^{-1} \cap C^{-1} = \{c^{-1}\} \]
for all \(c \in C_1\). Hence
\[|BC_1^{-1} \cup C^{-1}| = |B^#C_1^{-1} \cup C^{-1}| = |B^#C_1^{-1}| + |C^{-1}| \]
(here \(B^# = B \setminus \{1\})). Together with (10) this yields
\[(11) \quad |B^#C_1^{-1}| \leq k + m. \]

\(B\) is not a subgroup; therefore, by Corollary 3.2, \(|B^#c' \cap B^#c''| \leq 1\) whenever \(c' \neq c''\). Since \(|C_1| \geq |B| - 1 = m - 1\), we have at least \(m - 1\) sets \(B^#c, c \in C_1\) of cardinality \(m - 1\) such that any pair of them has at most one element in common. This implies that \(|B^#C_1^{-1}| \) has at least \(m(m - 1)/2\) elements. Together with (11), this implies \(m(m - 1)/2 \leq k + m\).

\[\Box \]
3.2. The case of B being a subgroup of G. Denote $l = |G : N_G(B)|$. If $l \leq 2$, then we are done. Thus we may assume that $l \geq 3$. Let $B_1 = B, B_2, ..., B_l$ be a complete set of conjugates to B.

\[(12)\quad AB_i = C_i, \quad AC_i^{-1} = B_i^{-1}, \quad i = 1, ..., l.\]

By Lemma 3.1, $B_i \cap B_j = \{1\}$ whenever $i \neq j$. In other words, B should be a TI-subgroup of G. Each C_i is a union of B_i-cosets; therefore $m | n$. To prove Theorem 3.1 we consider two separate cases:

(i) $|C_i \cap C_j| \leq 1$ for each $i \neq j$.

(ii) there exists a pair $i \neq j$ with $|C_i \cap C_j| \geq 2$.

The first case is settled below.

Proposition 3.5. Case (i) is impossible.

Proof. We have $AC_i^{-1} = B_i^{-1}, i = 1, 2, ..., l$. Therefore,$\quad A(C_1^{-1} \cup C_2^{-1} \cup C_3^{-1}) \subset G \setminus \{1\}.$

This implies $\quad C_1^{-1} \cup C_2^{-1} \cup C_3^{-1} \subset A^{-1},$

whence $\quad 3n - 3 \leq |C_1^{-1} \cup C_2^{-1} \cup C_3^{-1}| \leq |G| - |A| = k + m + n.$

Since $m \leq n$, we obtain $m \leq k + 3$, a contradiction. \Box

To consider the second case, we may assume that $|C_1 \cap C_2| \geq 2$.

Denote $D = C_1 \cap C_2$. For each $d \in D$ we can write

\[(13)\quad AB_1 d^{-1} = C_1 d^{-1},\]

\[(14)\quad AB_2 = C_2.\]

By Lemma 3.1, part (ii), either $\quad B_1 d^{-1} \subset C_2^{-1}$ and $B_2 \subset (C_1 d^{-1})^{-1},$

or $\quad |B_1 d^{-1} \cap C_2^{-1}| \leq 1 \geq |B_2 \subset (C_1 d^{-1})^{-1}|.$

Equivalently, either

\[(15)\quad dB_1 \subset C_2 \quad \text{and} \quad B_2 d \subset C_1,\]

or

\[(16)\quad B_1 \cap C_2^{-1} d = B_2 \cap dC_1^{-1} = \{1\}\]

Now Theorem 3.1 is a direct consequence of the following claim.

Lemma 3.6. If $|C_1 \cap C_2| \geq 2$, then $m \leq k + 2$.

Proof. First assume that there exist at least two elements $d_1, d_2 \in D$ which satisfy (16), i.e.,

\[(17)\quad B_1 \cap C_2^{-1} d_i = B_2 \cap d_i C_1^{-1} = \{1\}, \quad i = 1, 2.\]
Then we have three equalities
\[AB_1 d_1^{-1} = \overline{C_1 d_1^{-1}} \subset G \setminus \{1\}, \]
\[AB_1 d_2^{-1} = \overline{C_1 d_2^{-1}} \subset G \setminus \{1\}, \]
\[AC_2^{-1} = \overline{B_2^{-1}} \subset G \setminus \{1\}. \]

Now \(A(B_1 d_1^{-1} \cup B_1 d_2^{-1} \cup C_2^{-1}) \subset G \setminus \{1\}, \) whence \(B_1 d_1^{-1} \cup B_1 d_2^{-1} \cup C_2^{-1} \subset \overline{A^{-1}}. \)
This gives us the following inequality
\[|B_1 d_1^{-1} \cup B_1 d_2^{-1} \cup C_2^{-1}| \leq |G| - |A| = \omega_1(A) - |A| + m + n = k + m + n. \]

By (17) the left side may be estimated as follows: \(^2\)
\[|B_1 d_1^{-1} \cup B_1 d_2^{-1} \cup C_2^{-1}| = 2|B_2| - 2 + |C| = 2m + n - 2. \]

Hence \(2m + n - 2 \leq k + m + n, \) as required.

Thus we may assume that the number of elements of \(D \) satisfying (16) is not greater than 1. Therefore, there is a subset \(F \subset D \) such that \(|F| \geq |D| - 1 \) and
\[fB_1 \subset C_2, \quad B_2 f \subset C_1 \]
holds for all \(f \in F. \)

We claim that \(FB_1 = F. \) Indeed, \(fB_1 \subset C_2 \) for each \(f \in F. \) On the other hand, \(f \in C_1 \) and \(C_1 B_1 = C_1, \) implying \(fB_1 \subset C_1. \) Therefore, \(fB_1 \subset C_1 \cap C_2 = D \) This shows that an element \(fb, b \in B_1 \) doesn’t satisfy (16) for each \(b \in B_1. \) Hence \(fb \)
satisfies (15), whence \(fb \in F. \)

Write
\[|AB_2 B_1| = |(AB_1 \cup AB_2) B_1| = |(\overline{C_1} \cup \overline{C_2}) B_1| = |\overline{D} B_1| \]
\[= | \bigcup_{b \in B_1} \overline{D} b | \leq |F| = |G| - |F| \leq |G| - |D| + 1. \]

Since \(FB_1 = F \) and \(F \neq \emptyset, |F| \geq |B_1| = m. \) Hence \(|AB_2 B_1| \leq |G| - 2 \) and we can write
\[|AB_2 B_1| \geq \omega_1(A) + |B_2 B_1| = \omega_1(A) + |B|^2 = \omega_1(A) + m^2. \]

Thus
\[\omega_1(A) + m^2 \leq |G| + 1 - |D| = |G| - |C_1 \cap C_2| + 1 = |\overline{C_1} \cup \overline{C_2}| + 1 \]
\[= |\overline{C_1} \cup \overline{C_2}| + 1 = |AB_1 \cup AB_2| + 1 \]
\[\leq 2 \omega_1(A) + 2|B| - |A| + 1 = 2 \omega_1(A) - |A| + 2m + 1. \]

Finally,
\[m^2 - 2m \leq \omega_1(A) - |A| + 1 = k + 1. \]
Since \(m \geq 3, m \leq m^2 - 2m < k + 2 \) as desired. \(\Box \)

Proof of Theorem 3.2. Let \(B \in \mathcal{E}_1(A) \) be of minimal cardinality \(m. \) WLOG \(1 \in B. \)
Since \(\omega_1(A) < (m(A) - 3)/2 + |A| < m(A) - 2 + |A|, \) \(m > 2. \) If \(|B| > \omega_1(A) - |A| + 3, \) then we have completed our proof via Theorem 3.1. Otherwise, \(|B| \leq \omega_1(A) - |A| + 3 \) and \(|AB| = |A| + |B| + k \leq |A| + 2k + 3. \) But \(|B| > 2. \) Therefore \(|AB| \geq |A| + m(A). \) Consequently, \(2k + 3 \geq m(A), \) contrary to our assumption
\[\omega_1(A) - |A| = k < \frac{m(A) - 3}{2}. \]
This is a contradiction. \(\Box \)

\(^2\)Since \(B_1 d_1^{-1} \cap C_2^{-1} = \{ d_1^{-1} \} \) and \(d_1 \neq d_2, B_1 d_1^{-1} \) and \(B_1 d_2^{-1} \) are disjoint \(B_1 \)-cosets.
4. The estimation of $m(A)$

In this section we assume that G is a finite non-abelian simple group with a normal subset A, $|A| \leq |G|/4$.

For each $\lambda \geq 0$ we define

$$A_\lambda = \{ g \in G \mid |A \cup Ag| \leq |A| + \lambda \} = \{ g \in G \mid |A \cap Ag| \geq |A| - \lambda \}.$$

Clearly, A_λ is a normal subset of G and $A_\lambda \subset A_\mu$ whenever $\lambda \leq \mu$. Further, $A_\lambda = G$ for each $\lambda \geq |A|$. The simple calculations give us

$$\sum_{g \in G \setminus \{1\}} |A \cap Ag| = |A|^2 - |A|.$$

Lemma 4.1. $A_\lambda A_\mu \subset A_{\lambda + \mu}$.

Proof. Take an arbitrary $g \in A_\lambda$ and $h \in A_\mu$. One can write

$$|A \cup Ahg| = |Ag^{-1} \cup Ah| \leq |Ag^{-1} \cup Ah \cup A|$$

$$= |(Ag^{-1} \cup A) \cup (Ah \cup A)| = |Ag^{-1} \cup A| + |Ah \cup A| - |(Ag^{-1} \cup A) \cap (Ah \cup A)|$$

$$\leq |A| + \lambda + |A| + \mu - |A| = |A| + \lambda + \mu.$$

Since $1 \in A_\lambda$ for each $\lambda \geq 0$, then $|A_\lambda| \geq 1$ for all $\lambda \geq 0$. As follows from the definition, $m(A)$ is the minimal λ with $|A| > 1$. We abbreviate $m := m(A)$. Since G is simple, $0 < m$. In what follows we write $F_n = A_{nm} \setminus A_{m(n-1)}$, $n \geq 1$. In particular, $F_1 = A_1 \setminus \{1\}$. It is clear that F_n, $n \geq 1$ are disjoint and $A_{nm} = \{1\} \cup F_1 \cup \ldots \cup F_n$.

Lemma 4.2. If $A_{nm} \neq G$ for some $n \geq 2$, then

$$A_{nm} \geq |F_1| + |A_{m(n-1)}|;$$

$$|F_n| \geq |F_1|;$$

$$|A_{nm}| \geq 1 + n|F_1|.$$

Proof. (i) Since G is simple, the implication

$$|AB| \neq |G| \Rightarrow |AB| \geq |A| + |B| - 1$$

holds for each pair A, B of normal subsets (see Theorem 1.4 of [2]).

By Lemma 4.1 $A_m A_{m(n-1)} \subset A_{nm} \neq G$, whence

$$|A_{nm}| \geq |A_m| + |A_{m(n-1)}| - 1 = |F_1| + |A_{m(n-1)}|.$$

(ii) Since $A_{nm} \supset A_{m(n-1)}$, $|F_n| = |A_{nm}| - |A_{m(n-1)}|$ and (ii) follows.

Part (iii) of the claim follows from (i) and (ii).

Lemma 4.3. If $|F_1| \geq |A|$, then $3m > |A|$.

Proof. At first consider the case $A_{2m} = G$. Since $|A \cap Ag| \geq |A| - \lambda$ for all $g \in A_\lambda$, the inequality $|A \cap Ag| \geq |A| - 2m$ holds for all $g \in G$. By applying (20) we obtain

$$|A|(|A| - 1) \geq (|A| - 2m)(|G| - 1) > (|A| - 2m) \cdot 3|A|.$$

After cancellation we obtain

$$|A| - 1 > 3|A| - 6m$$

and the claim follows.
Assume now that \(A_{2m} \neq G \). Then \(\{1\} \cup F_1 \cup F_2 \neq G \) and, due to (20),
\[
|A|(|A| - 1) \geq \sum_{g \in F_1} |A \cap Ag| + \sum_{g \in F_2} |A \cap Ag| \geq (|A| - m)|F_1| + (|A| - 2m)|F_2|.
\]
But \(|F_2| \geq |F_1| \geq |A| \) by Lemma 4.2. Therefore \(|A|(|A| - 1) \geq (2|A| - 3m)|A| \). This completes the proof. \(\diamondsuit \)

Let us order the elements of \(G = \{g_0, \ldots, g_{n-1}\}, n = |G| \), in such a way that \(i < j \) implies \(\lambda_i \leq \lambda_j \), where \(\lambda_j = |A \cap Ag_j| \).

Proposition 4.4. If \(j \leq |F_1| i \), then \(\lambda_j \geq |A| - m i \).

Proof. We claim that \(j \leq |F_1| i \) implies that \(g_j \in A_m \). Indeed, this inclusion is evident in the case \(A_m = G \). Thus, we can assume that \(A_m \neq G \), which implies, according to (23), that \(|A_m| \geq 1 + i|F_1| \). Therefore, \(A_m \) contains \(m|F_1| + 1 \) first elements of \(G \), i.e., \(g_j \in A_m \) for each \(0 \leq j \leq i|F_1| \). As follows from the definition of \(A_m \), \(\lambda_j = |A \cap Ag_j| \geq |A| - m i \). \(\diamondsuit \)

Proposition 4.5. Let \(n \) be an integer satisfying
\[
\frac{2|A|}{3m} \leq n \leq \frac{2|A|}{3m} + 1
\]
and \(|F_1| \leq |A| \). Then \(n|F_1| \leq |G| - 3 \).

Proof. Denote \(a = |A| \). Since \(|F_1| \leq |A| \) and \(|G| \geq 4|A| \), it is sufficient to show that \(|F_1|(n - 1) \leq 3a - 3 \). Assume the contrary, i.e., \(|F_1|(n - 1) \geq 3a - 2 \). Then, by Proposition 4.4, \(\lambda_{3a-2} \geq a - (n - 1)m \), whence
\[
\lambda_{3a-2} \geq a - (n - 1)m \geq a - \frac{2a}{3m} m = \frac{a}{3}.
\]
Therefore, \(\lambda_i \geq a/3 \) for all \(1 \leq i \leq 3a - 2 \). But this implies that \(a(a - 1) \geq a(3a - 2)/3 \), which is a contradiction. \(\diamondsuit \)

Theorem 4.1. At least one of two inequalities
\[
|F_1| < 3m, \quad |A| < 6m
\]
holds.

Proof. Assume the contrary, i.e., \(|F_1| \geq 3m \) and \(|A| \geq 6m \). By Lemma 4.3, \(|F_1| < |A| \). Take an integer \(n \) such that \(\frac{2a}{3m} \leq n \leq \frac{2a}{3m} + 1 \).

Due to Proposition 4.5, \(n|F_1| \leq |G| - 3 \). Consider the sets \(S_i = \{g_j \mid i|F_1| \geq j > (i - 1)|F_1|, i = 1, \ldots, n\} \). Clearly \(|S_j| = |F_1| \). Since \(n|F_1| \leq |G| - 3 \), \(S_1 \cup \ldots \cup S_n \subset G \setminus \{e\} \). By Proposition 4.4, \(\lambda_j \geq a - mi \) for all \(j \) satisfying \(g_j \in S_i \). Therefore,
\[
a(a - 1) \geq \sum_{i=1}^{n} (a - mi)|S_i| = |F_1| \left(na - m \frac{n(n + 1)}{2} \right) \geq 3m \left(na - m \frac{n(n + 1)}{2} \right).
\]

By the choice of \(n \), \(m \geq \frac{2a}{3n} \), whence
\[
a(a - 1) \geq 3 \cdot \frac{2a}{3n} \left(na - m \frac{n(n + 1)}{2} \right) = 2a^2 - am(n + 1).
\]

(Here, as before, \(a = |A| \).)
After simple transformations, we obtain \(m(n + 1) \geq a + 1 \). On the other hand, \(n + 1 \leq \frac{2a}{3m} + 2 \), whence

\[
\left(\frac{2a}{3m} + 2 \right) m \geq a + 1 \iff \frac{2a}{3} + 2m \geq a + 1 \iff 2m \geq \frac{a}{3} + 1
\]

contrary to \(m \leq a/6 \). ♦

As a corollary we obtain the following:

Theorem 4.2. Let \(A \) be a normal subset of \(G \) with \(|A| \leq |G|/4 \). Denote by \(l \) the cardinality of the smallest non-trivial conjugacy class of \(G \). Then

\[
m(A) > \min \left(\frac{l}{3}, \frac{|A|}{6} \right) \geq \frac{l}{6}.
\]

Proof. Due to Theorem 4.1, \(m(A) = m > |F_1|/3 \) or \(m(A) = m > |A|/6 \). But \(F_1 \) is a non-trivial normal set. Therefore \(m(A) > l/3 \) or \(m(A) > |A|/6 \), as desired. ♦

It is easy to see that Theorem 1.1 is a direct consequence of this result and of Theorem 3.3.

5. PROOFS OF THEOREMS 1.2, 1.3

Proof of Theorem 1.2. Denote by \(l \) the minimal cardinality of non-trivial conjugacy classes of \(G \). If \(l \geq 43 \), then Theorem 1.1 implies our claim. Thus we may assume that \(l \leq 42 \) which implies that \(G \) has a primitive permutation representation of a degree of 42 at most. The classification of all primitive groups of a degree of 50 at most, was done in [8] without CFSG. According to [3], either \(G = A_n \) or a point stabilizer of \(G \) has a trivial centre. Thus, in the case of \(G \neq A_n \), \(G \) has a maximal subgroup of index of, at most, 21. Due to [3], \(G \) is one of the following groups given in Table 1.

Table 1

<table>
<thead>
<tr>
<th>(G)</th>
<th>degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_5)</td>
<td>6</td>
</tr>
<tr>
<td>(A_6)</td>
<td>10</td>
</tr>
<tr>
<td>(L_2(8))</td>
<td>9</td>
</tr>
<tr>
<td>(L_2(16))</td>
<td>17</td>
</tr>
<tr>
<td>(L_2(7))</td>
<td>7</td>
</tr>
<tr>
<td>(L_2(11))</td>
<td>11</td>
</tr>
<tr>
<td>(L_2(13))</td>
<td>14</td>
</tr>
<tr>
<td>(L_2(17))</td>
<td>18</td>
</tr>
<tr>
<td>(L_2(19))</td>
<td>20</td>
</tr>
<tr>
<td>(L_3(3))</td>
<td>13</td>
</tr>
<tr>
<td>(M_{11})</td>
<td>11</td>
</tr>
<tr>
<td>(M_{12})</td>
<td>12</td>
</tr>
<tr>
<td>(A_n), (n \leq 42)</td>
<td></td>
</tr>
</tbody>
</table>

The groups \(A_n, n \geq 7, L_3(3), M_{11}, M_{12} \) have no non-trivial conjugacy class with fewer than 43 elements.

The groups \(L_2(p), p \) odd, \(p > 7, L_2(8), L_2(16) \) have no non-trivial conjugacy class with fewer than 40 elements according to 8.27 of [6].
In the case of $G = A_6$, there are only two normal subsets A of G satisfying the assumption $|A| \leq |G|/4$, namely: the conjugacy classes C_1 and C_2 of cyclic types [3] and [3, 3], respectively. Using the multiplication tables of the conjugacy classes of A_6, one can easily check that $m(A) \geq 8$ in both cases, $A = C_1$ and $A = C_2$. Therefore, by Theorem 3.3,

$$|AB| \geq |A| + |B| + (m(A) - 3)/2 > |A| + |B| + 2,$$

as desired.

The case of $G = L_2(7)$ may be settled analogously.

Consider now the remaining case $G = A_5$. Denote by C_1, C_2, C_3, C_4 all its non-trivial conjugacy classes (we assume that $|C_1| = |C_2| = 12, |C_3| = 15, |C_4| = 20$). There are only three normal subsets A of A_5 satisfying $|A| \leq |G|/4$: $A = C_1, A = C_2, A = C_3$. If $A = C_3$, then $m(A) \geq 8$ and we are done. Since C_1 and C_2 are conjugate by an outer automorphism of A_5, it is enough to consider the only case of $A = C_1$. In this case, $m(A) = 7$ and the arguments we used before do not work. To show that our claim remains true even in this case, we assume the contrary, i.e.

$$\exists B \subset G, |B| > 1 \text{ and } |G| - 2 \geq |AB| \leq |A| + |B| + 2.$$

We also assume that B has a minimal cardinality among all subsets of A_5 satisfying the above conditions.

If B is not a subgroup, then by Lemma 3.3 $|B| (|B| - 3)/2 \leq \omega_1(A) - |A| \leq 2$. Therefore $|B| \leq 4$, whence $|AB| \leq |A| + |B| + 2 \leq |A| + 6$. On the other hand, $|B| \geq 2$ implies that $|AB| \geq |A| + m(A) = |A| + 7$. This is a contradiction. Hence B should be a subgroup of A_5. By Theorem 3.1 $|B| \leq 3 + \omega_1(A) - |A| \leq 5$. But direct calculations show that $|AB| \geq |A| + |B| + 3$ for each subgroup $B \leq A_5, |B| \leq 5$.

As a direct consequence we obtain the proof of Theorem 1.3. 1)-4) and 6)-9) are immediate corollaries of Theorem 4.2.

5) If G is simple, then

$$3 + \sum_{A \in A} |A| \leq | \prod_{A \in A} A | \leq 1 + \sum_{B \in B} |B|,$$

$$3 + \sum_{B \in B} |B| \leq | \prod_{B \in B} B | \leq 1 + \sum_{A \in A} |A|,$$

a contradiction.

10) Assume that G is simple and $Cla(G)^\# = \{C_1, \ldots, C_k\}$ with $|C_1| \leq |C_2| \leq \ldots \leq |C_k|$. Consider $C_2 \cdot \ldots \cdot C_k$. We claim that $|C_2 \cdot \ldots \cdot C_k| \geq |G| - 1$. Indeed, if it is not true, then by Theorem 1.2 $|C_2 \cdot \ldots \cdot C_k| \geq |C_2| + \ldots + |C_k| + 3$, implying $|C_2 \cdot \ldots \cdot C_k| \geq |C_2| + \ldots + |C_k| + |C_1| = |G| - 1$. Again, a contradiction.

Thus $|C_2 \cdot \ldots \cdot C_k| \geq |G| - 1$.

11) If $|C_k^k| \leq |G| - 2$, then $|G| - 2 \geq |C_k| \geq k|C| + 3(k - 1) \geq |G| + k - 3$, implying $k \leq 1$, a contradiction. Thus $|C_k^k| = |G| - 1$ is the unique case we have to consider. In this case, $C_k^k = G \setminus \{1\}$, which, in turn, implies $C_k^{k - 1} \subset C^{-1}$. Hence

$$|C| (k - 1) + 3(k - 2) \leq |C_k^{k - 1}| \leq |G| - |C|.$$

Consequently, $|C| k + 3k - 6 \leq |G| \leq k|C| + 2k$. Whence $k \leq 6$, contrary to the assumption.

\[\square\]
REFERENCES

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE, BAR-ILAN UNIVERSITY, 52900 RAMAT-GAN, ISRAEL