Coloring graphs with fixed genus and girth
HTML articles powered by AMS MathViewer
- by John Gimbel and Carsten Thomassen
- Trans. Amer. Math. Soc. 349 (1997), 4555-4564
- DOI: https://doi.org/10.1090/S0002-9947-97-01926-0
- PDF | Request permission
Abstract:
It is well known that the maximum chromatic number of a graph on the orientable surface $S_g$ is $\theta (g^{1/2})$. We prove that there are positive constants $c_1,c_2$ such that every triangle-free graph on $S_g$ has chromatic number less than $c_2(g/\log (g))^{1/3}$ and that some triangle-free graph on $S_g$ has chromatic number at least $c_1\frac {g^{1/3}}{\log (g)}$. We obtain similar results for graphs with restricted clique number or girth on $S_g$ or $N_k$. As an application, we prove that an $S_g$-polytope has chromatic number at most $O(g^{3/7})$. For specific surfaces we prove that every graph on the double torus and of girth at least six is 3-colorable and we characterize completely those triangle-free projective graphs that are not 3-colorable.References
- Miklós Ajtai, János Komlós, and Endre Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A 29 (1980), no. 3, 354–360. MR 600598, DOI 10.1016/0097-3165(80)90030-8
- Miklós Ajtai, János Komlós, and Endre Szemerédi, A dense infinite Sidon sequence, European J. Combin. 2 (1981), no. 1, 1–11. MR 611925, DOI 10.1016/S0195-6698(81)80014-5
- Béla Bollobás, Random graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 809996
- Gary Chartrand and Linda Lesniak, Graphs and digraphs, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. MR 834583
- R. J. Cook, Chromatic number and girth, Period. Math. Hungar. 6 (1975), 103–107. MR 379257, DOI 10.1007/BF02018401
- Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved problems in geometry, Problem Books in Mathematics, Springer-Verlag, New York, 1991. Unsolved Problems in Intuitive Mathematics, II. MR 1107516, DOI 10.1007/978-1-4612-0963-8
- P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959), 34–38.
- P. Erdős, Graph theory and probability. II, Canadian J. Math. 13 (1961), 346–352. MR 120168, DOI 10.4153/CJM-1961-029-9
- Paul Erdős, John Gimbel, and Dieter Kratsch, Some extremal results in cochromatic and dichromatic theory, J. Graph Theory 15 (1991), no. 6, 579–585. MR 1133813, DOI 10.1002/jgt.3190150604
- Steve Fisk and Bojan Mohar, Coloring graphs without short nonbounding cycles, J. Combin. Theory Ser. B 60 (1994), no. 2, 268–276. MR 1271274, DOI 10.1006/jctb.1994.1018
- T. Gallai, Kritische Graphen. I, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 165–192 (German, with Russian summary). MR 188099
- M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci. 1 (1976), no. 3, 237–267. MR 411240, DOI 10.1016/0304-3975(76)90059-1
- John Gimbel, Three extremal problems in cochromatic theory, Rostock. Math. Kolloq. 30 (1986), 73–78. MR 883438
- Herbert Grötzsch, Zur Theorie der diskreten Gebilde. V. Beziehungen zwischen Vierkant- und Dreikantnetzen auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 7 (1958), 353–358 (German). MR 116318
- G. Hajós, Über eine konstruktion nicht $n$-färbarer graphen, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 10 (1961), 116–117.
- R. H. Kim, The Ramsey number $R(3,t)$ has order of magnitude $t^2/\log (t)$. Preprint.
- Hudson V. Kronk, The chromatic number of triangle-free graphs, Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), Lecture Notes in Math., Vol. 303, Springer, Berlin, 1972, pp. 179–181. MR 0335332
- Hudson V. Kronk and Arthur T. White, A $4$-color theorem for toroidal graphs, Proc. Amer. Math. Soc. 34 (1972), 83–86. MR 291019, DOI 10.1090/S0002-9939-1972-0291019-5
- B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins University Press, Baltimore (to appear).
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- H. Joseph Straight, Cochromatic number and the genus of a graph, J. Graph Theory 3 (1979), no. 1, 43–51. MR 519173, DOI 10.1002/jgt.3190030106
- H. Joseph Straight, Note on the cochromatic number of several surfaces, J. Graph Theory 4 (1980), no. 1, 115–117. MR 558460, DOI 10.1002/jgt.3190040114
- Carsten Thomassen, Grötzsch’s $3$-color theorem and its counterparts for the torus and the projective plane, J. Combin. Theory Ser. B 62 (1994), no. 2, 268–279. MR 1305053, DOI 10.1006/jctb.1994.1069
- —, Color critical graphs on a fixed surface, to appear.
- D. A. Youngs, $4$-chromatic projective graphs, J. Graph Theory 21 (1996), no. 2, 219–227. MR 1368748, DOI 10.1002/(SICI)1097-0118(199602)21:2<219::AID-JGT12>3.0.CO;2-E
- Michael O. Albertson and Joan P. Hutchinson, The three excluded cases of Dirac’s map-color theorem, Second International Conference on Combinatorial Mathematics (New York, 1978) Ann. New York Acad. Sci., vol. 319, New York Acad. Sci., New York, 1979, pp. 7–17. MR 556001
Bibliographic Information
- John Gimbel
- Affiliation: Department of Mathematical Sciences, University of Alaska, Fairbanks, Alaska 99775
- Email: ffjgg@aurora.alaska.edu
- Carsten Thomassen
- Affiliation: Mathematical Institute, Building 303, Technical University of Denmark, 2800 Lyngby, Denmark
- Email: cthomassen@mat.dtu.dk
- Received by editor(s): January 1, 1996
- Additional Notes: Funding for this project was generously provided by The Technical University of Denmark, Special Initiative on Mathematical Modelling of Computer-Based Systems.
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 4555-4564
- MSC (1991): Primary 05C10
- DOI: https://doi.org/10.1090/S0002-9947-97-01926-0
- MathSciNet review: 1422897