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COMPACT GROUPS AND FIXED POINT SETS

ALEX CHIGOGIDZE, KARL H. HOFMANN, AND JOHN R. MARTIN

Abstract. Some structure theorems for compact abelian groups are derived
and used to show that every closed subset of an infinite compact metrizable
group is the fixed point set of an autohomeomorphism. It is also shown that
any metrizable product containing a positive-dimensional compact group as a
factor has the property that every closed subset is the fixed point set of an
autohomeomorphism.

1. Introduction

A space X is defined to have the complete invariance property (CIP) if every
nonempty closed subset of X is the fixed point set of a (continuous) self-mapping
of X [23]. If this condition holds for autohomeomorphisms of X , then we say that
X has the complete invariance property with respect to homeomorphisms (CIPH)
[13]. A survey of results concerning CIP for metric spaces may be found in [20], and
a number of nonmetric results may be found in [16]. Some spaces known to have
CIPH are even-dimensional Euclidean balls [18], compact surfaces and positive-
dimensional spheres [19], Menger manifolds [12], the Hilbert cube and metrizable
product spaces which have the real line or an odd-dimensional sphere as a factor [13].
Metrizable topological groups are known to have CIP if they are locally compact or
contain an arc [15]. In [16] it is shown that an uncountable self-product of circles,
real lines or two-point spaces has CIP and that connected subgroups of the plane
and compact groups need not have CIP. To best of the authors’ knowledge this is
the first investigation devoted to an explicit statement that topological groups in a
certain class have CIPH.

In this paper a general structure theorem for compact abelian groups is proved,
and this is used as a basis for a self-contained development yielding an explicit
structure theorem for finite-dimensional compact abelian groups. These results
are used to show that a nondegenerate compact metrizable group has CIPH iff it
is infinite. It is also shown that the product of two metrizable spaces has CIPH
if one of the factors is a positive-dimensional compact group. In particular, every
proper solenoid is an indecomposable continuum whose product with any metrizable
space has CIPH. Furthermore, if other examples of nondegenerate indecomposable
continua possessing CIPH exist, they cannot admit topological group structures
since we show that a nondegenerate compact group is an indecomposable continuum
iff it is a proper solenoid. The paper concludes with some results which show
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that conditions which ensure CIPH for metrizable spaces may fail to do so for
nonmetrizable spaces. For instance, it is shown that the product space of a compact
connected Lie group with a product of closed unit intervals (or two-point discrete
groups) has CIPH iff the product space is metrizable.

2. Structure Theorems for Compact Abelian Groups

We assume as known the duality between the category of compact abelian groups
and that of discrete abelian groups according to Pontryagin and van Kampen. For
two topological abelian groups A and B we shall always denote by Hom(A,B) the
topological abelian group of all continuous group homomorphisms from A to B
equipped with the compact open topology. We use the notation R for the locally
compact additive group of reals and T = R/Z for the circle group. We write

Ĝ = Hom(G,T) for the group of characters χ : G→ T (continuous in the category of
compact abelian groups). The duality theorem states that the evaluation morphism

ηG : G→ ˆ̂
G, ηG(g)(χ) = χ(g) is an isomorphism in all cases. One identifies R̂ with

R in a natural way.

Definition 2.1. For a compact topological group G we write

L(G)
def
= Hom(R, G) ∼= Hom(Ĝ,R)

and note that L(G) is a real topological vector space with the topology of uniform
convergence on compact sets. We set exp: L(G) → G, expX = X(1).

All one-parameter subgroups of G are of the form X = (r 7→ exp r · X) : R →
G. We note that Hom(Ĝ,R) ∼= Hom(R ⊗ Ĝ,R) is the vector space of all linear

functionals on the real vector space R⊗ Ĝ, i.e., the algebraic dual (R⊗ Ĝ)∗ given
the weak-* topology. The only isomorphy invariant is the cardinal

d
def
= dimR(R⊗ Ĝ) = dimQ(Q⊗ Ĝ) = rank Ĝ.

Therefore, L(G) is algebraically and topologically isomorphic to Rd.
For compact Hausdorff spaces, the terms zero-dimensional and totally discon-

nected are synonymous. (This is sometimes referred to as Vedenissoff’s Theorem
[22].) Below |A| stands for the cardinality of a set A, and ω denotes the first infinite
cardinal number.

Proposition 2.2. For a compact abelian group G there is a compact zero-dimen-
sional subgroup ∆ such that the homomorphism

φ : ∆× L(G) → G, φ(d,X) = d expX

satisfies the following conditions:

(i) φ is continuous, surjective and open, i.e., is a quotient morphism.

(ii) kerφ is algebraically and topologically isomorphic to D
def
= exp−1(∆), and D

is a closed totally disconnected subgroup of L(G). In particular, it does not
contain any nonzero vector spaces.

(iii) φ({1} × L(G)) = expL(G) is dense in G0, the identity component of G.

Proof. By Zorn’s Lemma, the abelian group Ĝ contains a free subgroup F of max-

imal rank. Then E
def
= Ĝ/F is a torsion group. We set ∆ = F⊥ (the annihilator of

F in G). Then, by duality, ∆̂ ∼= E. Since E is a torsion group, ∆ is a totally discon-
nected subgroup. Clearly, φ : ∆×L(G) → G defined by φ(d,X) = d expX = dX(1)
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is a well defined continuous homomorphism. Further, T
def
= F̂ , as the character

group of a direct sum of copies of Z, is a product of copies of T ∼= Ẑ, i.e., a torus.
In particular, exp : L(T ) → T is surjective. Let p : G → T denote the quotient
morphism which identifies G/∆ with T . The morphism

L(p) = Hom(R, p) : L(G) = Hom(R, G) → Hom(R, T ) = L(T )

is an isomorphism since Hom(incl,R) : Hom(Ĝ,R) → Hom(F,R) is an isomorphism
(as Hom(E,R) = {0}).
Proof of (i). The surjectivity of φ. The exact sequence

0 → F
incl−→ Ĝ

quot−→ E → 0

gives an exact sequence of compact groups

0 → ∆
incl−→ G

p−→ T → 0.

Since

L(G)
L(p)−−−−→ L(T )

expG

y yexpT

G
p−−−−→ T

is commutative, p(expG L(G)) = T . Hence ∆ expL(G) = (ker p) expL(G) = G.
Thus φ is surjective.

The openness of φ. For every subgroup F ′ of G containing F such that F ′/F is
finite, we get exact sequences

0 → F ′ incl−→ Ĝ
quot−→ E′ → 0

and

0 → ∆′ incl−→ G
p′
→ T ′ → 0,

and ∆′ has finite index in ∆. We note that

• the family of all ∆′ intersects in {1},
• the argument showing ∆ expL(G) = G above shows in exactly the same

fashion that ∆′ expL(G) = G.

Since F/F ′ is finite, we can write F = F1 ⊕ F2 such that F ′ = F1 ⊕ F ′2 with
F2/F

′
2
∼= F/F ′.

Accordingly, we have T = T1 × T2, T
′ = T1 × T ′2 (with a natural identification),

Hom(F,R) = Hom(F1,R)⊕ Hom(F2,R), and thus L(T ) = L(T )1 ⊕ L(T )2. Corre-
spondingly, L(G) = L(G)1 ⊕ L(G)2, where L(G)j = L(p)−1(L(Tj)), j = 1, 2. We
write

0 → ∆′ incl→ G
p′
→ T1 ⊕ T ′2 → 0

and note that L(G)1 = L(p′)−1(L(T1)). Suppose that p′(g) ∈ T1. Then there is an
X1 ∈ L(G)1 such that expT1

L(p′)(X1) = p′(expGX1) = p′(g). Thus g expG(−X1)

∈ ker p′ = ∆′. Therefore, ∆′ expG L(G)1 = (p′)−1(T1). Hence ∆′ expG L(G)1 is
closed in G.

Let U × V be a product zero-neighborhood of ∆ × L(G). Then U contains a
subgroup ∆′ of ∆ which is open in ∆ and has finite index in ∆, and V contains a
vector subspace L(G)1 of L(G) with dimL(G)/L(G)1 <∞.
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It is no loss of generality to assume that U = U∆′ and V = V L(G)1, i.e., that
U and V are “saturated”. We observe that

(∆× L(G))/(∆1 × L(G)1) ∼= ∆/∆1 × L(G)/L(G)1

is a Lie group with finitely many components, and φ induces a surjective homomor-
phism of Lie groups φ′ : (∆×L(G))/(∆1×L(G)1) → G/∆′ expL(G)1. By the Open
Mapping Theorem for locally compact groups, φ′ is open. The following diagram
is commutative:

∆× L(G)
quot−−−−→ ∆×L(G)

∆′×L(G)1

φ

y yφ′

G
quot−−−−→ G

∆ expG L(G)1

Since U × V is saturated, we may conclude that φ(U × V ) is open in G.

Proof of (ii). We have kerφ = {(d,X) ∈ ∆ × L(G) : d expX = 1}. The map
X 7→ (exp−X,X) : D → kerφ is therefore bijective. This morphism has the inverse
(d,X) 7→ X : kerφ → D. Hence it is an algebraic and topological isomorphism.
The projection pr∆ : ∆× L(G) → ∆ induces an injective morphism j : kerφ→ ∆.

Let C
def
= (kerφ)0 denote the identity component of kerφ. Then j(C) is a connected

subgroup of the totally disconnected group ∆. It is therefore singleton and thus C
is singleton, i.e., kerφ and thus D are totally disconnected.

Proof of (iii). This statement is known. Here is a short argument: Set H =

expL(G). The inclusion j : H → G induces an isomorphism L(j) : L(H) → L(G)
in view of the definitions. Since L(·) = Hom(R, ·), the following sequence is exact:

0 → L(H)
L(j)→ L(G) → L(G/H) → Ext(R, H).

But H is divisible as the underlying group of a connected compact abelian group.
Hence H is injective, and thus Ext(R, H) = {0}. Hence L(G/H) = {0}. Since
every nondegenerate compact connected abelian group contains a nondegenerate
one-parameter subgroup, (G/H)0 = {0}. Therefore H = G0.

To the best of our knowledge Proposition 2.2 is new in the generality stated here.
It would be more valuable if we knew the totally disconnected closed subgroups of
a topological vector space Rd for any cardinal d. In finite dimensions, this matter
is no problem at all, as we shall record in the following.

Proposition 2.3 (Dixmier, see [8]). For any compact abelian group G the sub-
group expL(G) is exactly the arc component of 0 in G.

We can write π0(G) = G/ expL(G), and Dixmier has shown that π0(G) ∼=
Ext(Ĝ,Z).

Corollary 2.4. The morphism φ : ∆ × L(G) → G maps arc components onto arc
components, and π0(G) ∼= ∆

∆∩expL(G) (algebraically).

Theorem 2.5. The following conditions are equivalent for a compact abelian group
G and a natural number n:

1. rank Ĝ = dimQ(Q⊗ Ĝ) = n.
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2. There is an exact sequence

0 → tor(Ĝ) → Ĝ→ Qn → E → 0

with the torsion subgroup tor(Ĝ) and some torsion group E.
3. There is an exact sequence

0 → Zn → Ĝ→ E → 0

with some torsion group E.

4. There is a compact zero-dimensional subgroup Z of (Q̂)n and an exact se-
quence

0 → Z → (Q̂)n → G→ G/G0 → 0,

where G0 is the identity component of G.
5. There is a compact zero-dimensional subgroup ∆ of G and an exact sequence

0 → ∆ → G→ Tn → 0.

6. dimL(G) = n.
7. There is a compact zero-dimensional subgroup ∆ of G and a quotient homo-

morphism φ : ∆×Rn → G which has a discrete kernel. In particular, φ yields
a local isomorphism of ∆× Rn and G.

8. The identity of G has a neighborhood basis each member of which is homeo-
morphic to D × Cn with some totally disconnected compact space D and an
n-cell Cn.

Proof. In the theory of abelian groups, conditions (1), (2), and (3) are all known

to be equivalent to the statement that the (torsion free) rank of Ĝ is n. By duality,
(4) is equivalent to (2), and (5) is equivalent to (3).

Condition (6), saying dim Hom(R, G) = n, in view of

Hom(R, G) ∼= Hom(Ĝ,R) ∼= Hom(Q⊗ Ĝ,R) ∼= RdimQ(Q⊗Ĝ),

is equivalent to (1).
(1) =⇒ (7). By (1) we have L(G) ∼= Rn. By Proposition 2.2, we obtain φ : ∆×

Rn → G as asserted, because kerφ ∼= exp−1(∆) and this closed subgroup of L(G) ∼=
Rn does not contain vector subgroups, hence is discrete.

(7) =⇒ (8) is immediate.
(8) =⇒ (6). Let U be an identity neighborhood of G and h : D × Cn → U a

homeomorphism with a closed n-cell Cn.
We let p : G→ T be as in the proof of Proposition 2.2 so that L(p) : L(G) → L(T )

is an isomorphism. Let K = ker(L(p) expT ) = ker(p expG) as before. We may
assume that ∆ = ker p is such that there is a compact identity neighborhood V ⊆ U
with V∆ = V .

We recall the free subgroup F of Ĝ and let (εj)j∈J be a basis of F . Set ρ0 : RJ →
Hom(F,R), ρ0((rj)j∈J )(

∑
j∈J rj · εj) =

∑
j∈J εj(rj). Then ρ0 is an isomorphism

of topological groups, and since Hom(F,R) ∼= Hom(R, T ) ∼= L(T ) we have an
isomorphism of topological groups ρ : RJ → L(T ). Moreover, if we write F =⊕

j∈J Z · εj and, accordingly, T =
∏

j∈J Ẑ · εj σ→ TJ , then exp′ = σ expT ρ : RJ →
TJ has the kernel ZJ . It follows that K = ker expT L(p) maps isomorphically
onto ZJ under ρL(p). Now p(V ) is an identity neighborhood of T ∼= TJ . Then
we find an 1

2 > r > 0 so that Sr = L(p)−1ρ−1([−r, r]J ) satisfies S2r ∩ ZJ = {0}
and p(expG Sr) = expT L(p)(Sr) ⊆ p(V ). Then p expG maps Sr homeomorphically
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into T , and so a fortiori expG maps Sr homeomorphically into G. But V = V∆ =
p−1p(V ) ⊆ U . Hence expG Sr ⊆ U , and e = expG |Sr : Sr → U is a homeomorphism
onto the image. Then h−1e : Sr → D×Cn is a homeomorphism onto the image. If
(d, c) = h−1(1), then h({d} × Cn) is the connected component of 1 in U , and thus
h−1e(Sr) is a homeomorphic copy of Sr contained in the n-cell {d} × Cn. But Sr
is homeomorphic to [−r, r]J , hence to [−1, 1]J . Since [−1, 1]J contains [−1, 1]m for
m = 0, 1, 2, . . . , |J |, this entails |J | ≤ n by the invariance of domain.

Thus m
def
= dimL(G) = |J | ≤ n. Then by “(6) ⇒ (8)”, there are arbitrarily

small identity neighborhoods homeomorphic to D′×Cm with a totally disconnected
compact space D′ and an m-cell Cm. Thus, by hypothesis (8), an n-cell must be
contained in an m-cell, and this implies n ≤ m by invariance of domain.

Definition 2.6. Let G be a compact abelian group. Then we set

dimG = dimQ(Q⊗ Ĝ)

and call this cardinal the dimension of G. If dimG is finite, then G is called
finite-dimensional, and otherwise infinite-dimensional.

Corollary 2.7. If for a compact abelian group G there is a natural number n such
that the equivalent conditions of Theorem 2.5 are satisfied, then n = dimG.

Suppose that DIM is a dimension function defined for compact topological spaces
such that

• it assigns to a product D × Cn of a compact totally disconnected space and
a compact n-cell Cn the dimension n,

• it assigns to a homogeneous space containing such a subspace with nonempty
interior the dimension n, and

• it assigns to a compact space the dimension ∞ if it contains a homeomorphic
copy of [−1, 1]ω.

Then we will have

DIM(G) =

{
dimG if G is finite-dimensional,

∞ if G is infinite-dimensional.

Proposition 2.8. (Pontryagin) For a compact abelian group G one has w(G) =

|Ĝ|, where w(G) denotes the weight of the space G.

From Theorem 2.5 for an infinite compact group we note that

|Ĝ/ tor(Ĝ)| = |Q⊗ Ĝ| = max{ω, dimG}.
We derive

Proposition 2.9. For an infinite compact abelian group G,

w(G) = w(G/G0)max{ω, dimG}.
In particular, a finite-dimensional connected compact abelian group is metric.

More generally, a finite-dimensional compact abelian group is metrizable iff
w(G/G0) ≤ ω.

For the proof of the next proposition we need some facts on abelian groups.

Lemma 2.10 (Pontryagin). Let A be a countable torsion free group and assume
that every finite rank pure subgroup is free. Then A is free.
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Proof. The claim is clear if rankA < ∞. We now assume rankA = ω. Let
{e1, e2, . . . } denote a maximal free set. Define Pj to be the free pure subgroup
generated by {e1, . . . , ej}. Inductively define a free set {f1, f2, . . . } such that
f1, . . . , fj(n) is a basis of Pn for a suitable sequence of natural numbers j(n). In-
deed, if f1, . . . , fj(n) is a basis of Pn, then Pn+1 is free and the pure subgroup
Pn is a direct summand (in view of the elementary divisor theorem). Hence we
can complement the basis of Pn to a basis f1, . . . , fj(n), fj(n)+1, . . . , fj(n+1). This
completes the recursion. The span of the free set f1, . . . contains all Pn and thus
all en, and thus it is A.

Now let A be an abelian group. Let K denote the set of all subgroups K of A
such that A/K is free. Then K is a filter basis; for if K1, K2 ∈ K then K = K1∩K2

is the kernel of the map a 7→ (a + K1, a + K2) : A → A/K1 × A/K2. The image
of this homomorphism is a subgroup of a free abelian group and is therefore a free
abelian group. We can form

K∞ = K∞(A) =
⋂
K.

(Cf. [9].) Then all morphisms into free groups factor through A→ A/K∞, and the
homomorphisms A/K∞ → Z separate the points. In particular, A/K∞ is torsion
free and tor(A) ⊆ K∞. Notably, K∞ is a pure subgroup.

For a subgroup H of a torsion free abelian group A, the group

[H ]
def
= {a ∈ A : ∃n ∈ N such that n · a ∈ H}

is the smallest pure subgroup containingH . One also callsA torsionless ifK∞(A) =
{0}.
Lemma 2.11. If K∞(A) = {0}, i.e., if A is torsionless, then every finite rank
pure subgroup of A is free.

Proof. Let P be a finite rank pure subgroup of A and F a maximal rank free
subgroup contained in P . Then P = [F ]. Since K∞(A) = {0}, there is a subgroup
K ∈ K such that F ∩K = {0}. It follows that P ∩K = {0}, for if p ∈ P ∩K then
there is an m ∈ N such that m · p ∈ F ∩K = {0}, whence p = 0 since A is torsion
free. The map x 7→ x+K : P → A/K is therefore injective. But A/K is free by the
definition of K, and thus P is a free abelian group as a subgroup of a free abelian
group, as we wanted to show.

Lemma 2.12 (Main Lemma). Let A be an abelian group such that A/K∞(A) is
countable. Then A contains a free subgroup F such that A = F⊕K∞(A). Moreover,
K∞(A) does not have any nondegenerate free quotients.

Proof. The group A/K∞(A) is torsion free and countable, and the morphisms into
free groups separate the points. Hence K∞

(
A/K∞(A)

)
= {0}. Thus from Lemma

2.11 we know that every finite rank pure subgroup is free. Then, by Lemma 2.10,
the quotient A/K∞(A) is free. Since free groups are projective, this implies the
existence of F as asserted. Again any free quotient of K∞(A) splits, so K∞(A) =
F ′ ⊕ K with a free F ′ isomorphic to the free quotient. But then F ⊕ F ′ is free
and thus K ∈ K. It follows that K∞(A) ⊆ K and that, as a consequence, F ′ is
degenerate.
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Theorem 2.13.

(i) If T is a torus subgroup (a product of circle groups) of a compact abelian group
G, then there is a (not necessarily unique) subgroup C such that

(t, c) 7→ tc : T × C → G

is an isomorphism of compact groups.
(ii) Every compact abelian group G contains a (fully characteristic) unique small-

est closed subgroup M = M(G) containing all circle subgroups, and M⊥ =

K∞(Ĝ). The subgroup M(G) is always locally connected.
(iii) If M(G) satisfies the first (and hence the second) axiom of countability, i.e.,

is metric, then M(G) is a torus and G contains a closed subgroup C not
containing circle groups such that

(m, c) 7→ mc : M(G)× C → G

is an isomorphism of compact groups, i.e., G is a direct product of a metric
torus and a torus free compact subgroup.

(iv) Every metric compact abelian group G is the direct product of a fully charac-
teristic maximal torus subgroup M(G) and some torus free closed subgroup.

Proof. Part (i) just restates the fact, by duality, that in the category of abelian
groups the free groups are the projectives and that a homomorphism onto a pro-
jective splits.

(ii) We let M be the closure of the group generated by the union of all circle
groups. This is the smallest closed subgroup of G containing all circle groups and
is, therefore, fully characteristic. The product of two tori is a torus (it is clearly
a compact subgroup, and the first factor splits by (i); the complementary factor is
a homomorphic image of the second factor and is, therefore, a torus). Hence the
set of all tori in G is upwards directed, and M is the closure of its union. Dually,
the annihilator of M is the intersection of all T⊥ as T ranges through all tori. By

duality, the T⊥ are exactly the members of K(Ĝ). Thus M(G)⊥ = K∞(Ĝ). In

particular, M̂(G) ∼= Ĝ/K∞(Ĝ). Thus by Lemma 2.11, in the character group of
M(G) every finite rank pure subgroup is free. By a theorem of Pontryagin [17, II,
Satz 48, Seite 33], this property characterizes locally connected compact abelian
groups.

(iii) Now suppose that M(G) is metric. Then Ĝ/M(G)⊥ ∼= Ĝ is countable. By

(ii) we have M(G)⊥ = K∞(Ĝ). Now Lemma 2.12 implies Ĝ = F ⊕M(G)⊥ with
a (countable) free group F . We set C = F⊥ ⊆ G and obtain G ∼= M(G) × C, as
stated in (iii). Since M(G) contains all circle groups, C does not contain any circle

groups. (Equivalently: K∞(Ĝ) does not have any free quotients by Lemma 2.12.)
(iv) If G is metric, then, in particular, (iii) applies and proves the assertion.

It is known that, for metric compact connected groups, arc connectivity, local
connectivity, and being a torus group are equivalent properties. The character
group G of Zω is connected, locally connected, but not arcwise connected, let alone
a torus group. But for this G we have G = M(G). This shows that metrizability
in (iii) is essential.

Dixmier [8] has observed (using the Axiom of Choice) that there is an abelian
group A containing a subgroup Z isomorphic to Z such that A/Z ∼= Zω, and that
Z does not split. If g ∈ Z is a generator and if there existed a homomorphism
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f : A→ F into a free group F with f(g) 6= 0, then [f(Z)] ∼= Z and F = F1⊕ [f(Z)];
hence there would exist a morphism φ : A→ Z with φ(Z) = Z, yielding A = H ⊕Z
and thus contradicting the fact that Z does not split. Hence Z ⊆ K∞(A). Since
A/Z ∼= Zω, the free quotients separate the points of A/Z, whence Z = K∞(A). One
notes that every finitely generated pure subgroup of A is free. As a consequence

G
def
= Â is a compact connected locally connected (not arcwise connected) group for

which G/M(G) is a circle group. In other words, M(G/M(G)) need not be zero in
general! One notes that, in the absence of metrizability, this is the starting point of
a transfinite ascending recursion process which we shall not pursue in this paper.

However, in view of Theorem 2.13(iv), in the metric case, the hypothesis that G
be torus free is frequently no restriction of generality.

Proposition 2.14. Let Γ be a compact finite-dimensional abelian group. Then we
have the following conclusions:

(i) Γ ∼= Tm×G with a unique maximal torus subgroup Tm×{1}, and some torus
free compact n-dimensional group G, m+ n = dim Γ.

(ii) There is a compact zero-dimensional subgroup ∆ of G and a quotient homo-
morphism φ : Rn ×∆ → G with a discrete kernel isomorphic to a lattice Zp
with p ≤ n = dimG.

(iii) The arc component of 1 in G is Ga = expL(G) = φ(Rn × {1}). The arc
components of G are the sets d = Ga = Gad = φ(Rn × {d}) = d expL(G),
and φ maps the arc component Rn × {d} continuously and bijectively onto
dGa.

(iv) If Γ/Γ0 is metric, then we may endow Rdim Γ × ∆ = Rm × Rn × ∆ with
an invariant product metric d = d0 × d1 with a Hilbert space metric d0 on
Rdim Γ and an ultrametric d1 on ∆, and give Γ the quotient metric dΓ for the
homomorphism

Φ: Rdim Γ ×∆ → Γ,

(X,Y, d) 7→ (X + Zn, φ(d, Y )) : Rm × Rn ×∆ → Tm ×G ∼= Γ.

Then (Γ, dΓ) is locally isometric to Rdim Γ ×∆ under Φ.

Proof. (i) By Proposition 2.9, the component Γ0 is metric, hence M(Γ) = M(Γ0)
is metric. Thus Theorem 2.13(iii) proves Γ ∼= M(Γ) ×G with a torus M(Γ) and a
torus free compact group G. We have dim Γ = dimM(Γ) + dimG. This proves (i).

(ii) From Theorem 2.5 we may identify L(G) with Rn, and we get φ : L(G)×∆ →
G, φ(X, d) = d expX , a local isomorphism. (Recall from the proof of Theorem 2.5
that totally disconnected closed subgroups of Rn are discrete lattices.)

(iii) From Corollary 2.4 we know that φ maps arc components as stated. If
expX = 1, then exp R ·X is a circle group or is trivial. But G does not contain any
circle groups. Hence X = 0 and φ maps Rn × {1} injectively. Thus (iii) is proved.

(iv) is a straightforward consequence of (i) and (ii).

Let us recall at this point that for a compact connected nonabelian group G, the
commutator groupG′, which is a closed semisimple nonsingleton compact subgroup,
contains a copy of SO(3) or a copy of SU(2) and thus is at least 3-dimensional.
Hence a compact connected group G with dimG ≤ 2 is abelian.

Definition 2.15. A solenoid is a 1-dimensional compact connected group. A
proper solenoid is a solenoid which is not a circle group.
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Proposition 2.16. A compact abelian group G is a solenoid iff its character group
is isomorphic to a nonzero subgroup of Q. It is proper iff this subgroup is not
free.

Proposition 2.17. There is a 2-dimensional compact connected group G which is
not a product of two solenoids.

Proof. Pontryagin (see [17, I, Beispiel 15, Seite 48 and II, Beispiel 68, Seite 39])
has exhibited subgroups A of Q2 with Z2 ⊆ A ⊆ Q2 which have no nondegenerate

direct summands. For such a group, G = Â is a 2-dimensional compact connected
group which is not a product of two solenoids.

A continuum is a compact connected space. It is called decomposable if it is
the union of two proper subcontinua; otherwise, it is indecomposable. The proper
solenoids are known to be indecomposable metric continua. The following theorem
shows that this situation cannot occur for compact groups having dimension greater
than one. For abelian compact groups, the following theorem was proved by van
Heemert [21]; his article also reflects most of the earlier history of these continua.
However, even in the case of abelian groups, it is sensible to present a complete
proof which reflects the current state of information on compact groups and meets
modern demands of completeness and detail.

Theorem 2.18. For a nondegenerate compact group G the following statements
are equivalent:

(i) G is a proper solenoid.
(ii) The underlying space of G is an indecomposable continuum.

Proof. We just noted that (i)=⇒(ii), and observed that the circle is decomposable.
Therefore we must prove that dimG > 1 implies the decomposability of G. By (ii)
the group G is connected.

(a) We preface the proof by the following remark. Assume that N is a com-
pact and connected normal subgroup of G and that p : G → G/N is the quotient
morphism. If X ⊆ G/N is connected, then p−1(X) is connected. Thus, if G/N is
decomposable, then G is decomposable.

(b) Assume next that G is semisimple. The structure theory of compact con-
nected semisimple groups says that there is a family of simple compact connected
Lie groups {Gj : j ∈ J} and a totally disconnected central subgroup D such that
G ∼= (

∏
j∈J Gj)/D (see, for example, [3, Chap. 9]). Identify G with this factor

group. If G is not degenerate, pick an i ∈ J . Then N
def
=
∏
j∈J−{i}GjD/D is a

compact connected normal subgroup of G and G/N ∼= Gi/(N ∩Gi) is a simple con-
nected Lie group, and thus is a compact manifold of dimension at least 3. Hence it
is decomposable. From part (a) of the proof we derive that nondegenerate compact
connected semisimple groups are decomposable.

(c) The commutator subgroup G′ of a compact connected group G is closed
and semisimple [3]. We claim that G is abelian. Indeed, assume the contrary.
We have G = Z0G

′, where Z0 is the identity component of the center, and then
G/Z0

∼= G′/(Z0 ∩G′) is semisimple and nonsingleton. Then G/Z0 is decomposable
by (b), and thus G is decomposable by (a). This conclusion contradicts (ii) and
thus proves the claim. We may therefore assume for the remainder of the proof
that G is abelian.
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(d) Assume that G is a compact connected abelian group. Then Ĝ is a torsion
free group whose rank is at least 2. Hence we find a pure subgroup P of rank 2.
(Indeed, let F be a free subgroup of maximal rank. Write it in the form F1 ⊕ F2

with rankF1 = 2 and set P = {χ ∈ Ĝ : n · χ ∈ F1 for some n ∈ N}.) Let C = P⊥,

the annihilator of P in G. Then Ĉ ∼= Ĝ/P and Ĝ/C ∼= P . Since P is pure, Ĝ/P

and thus Ĉ are torsion free. Hence C is connected. In view of part (a) of the
proof, G is decomposable if G/C is decomposable. Furthermore, rankP = 2 im-
plies dimG/C = 2. In order to complete the proof it therefore suffices to prove that
a 2-dimensional compact connected abelian group is decomposable. By Theorem
2.13(iv) we may assume that G is torus free, since G is clearly decomposable if G
contains a circle group as a factor. Using Proposition 2.14, we obtain a compact
zero-dimensional subgroup 4 and a closed ε-ball neighborhood B of the origin in
L(G) ∼= R2 such that φ maps 4 × B homeomorphically onto an identity neigh-
borhood W of G. As in Proposition 2.2 and its proof, we set D = exp−1(4) and
note that expX = φ(δ, Y ) = δ expY with δ ∈ 4 means δ = exp(X − Y ), and thus
X = Y + d with d ∈ D. Thus, identifying L(G) with R2, we see that exp: R2 → G
maps D + B bijectively and continuously onto W ∩ expL(G). Let U = IntB, the
manifold interior of B. By Proposition 2.2(ii), the closed subgroup D of R2 is a
discrete lattice and therefore is countable. Thus D+U is a countable disjoint union

of open disks in the plane. Therefore its complement E
def
= R2 − {D + U} is con-

nected. By Proposition 2.2(iii), the set expL(G) is dense in G and the complement

expL(G)−W = expE is dense in the complement A
def
= G− φ(4×U). Note that

A is a compact subset of G since φ is an open map, and that 4A = A because
φ(4× U) is stable under the multiplication with 4. Also, A, being the closure of
a connected set, is connected. Every arc component of W is of the form δ expB,
δ ∈ 4, and its intersection with A is δ exp ∂B.

Let K1 be a proper compact open subgroup of 4, and set K2 = 4 − K1. Set
C1 = A ∪ φ(K1 × B) and C2 = A ∪ φ(K2 × B). Since each arc component of the
compact set φ(Kj × B), j = 1, 2, intersects the continuum A, each of the sets C1

and C2 is a continuum. Therefore, since C1, C2 are proper subcontinua of G and
G = C1 ∪C2, the space G is decomposable as claimed.

3. Compact Metrizable Groups and CIPH

A flow on a spaceX is a continuous function ϕ : X×R → X such that ϕ(x, 0) = x
and ϕ(ϕ(x, s), t) = ϕ(x, s + t) for all s, t ∈ R and x ∈ X . The map ϕt : X → X
defined by ϕt(x) = ϕ(x, t) is a homeomorphism since ϕ−t = ϕ−1

t . A point p ∈ X
is an invariant point of ϕ if ϕt(p) = p for all t ∈ R, and the set

⋂{fix(ϕt) : t ∈ R},
called the invariant set of the flow, is a closed subset of X if X is a Hausdorff space.

Definition 3.1. A flow ϕ : M ×R →M on a metric space (M,d) is called uniform
if it satisfies the following conditions:

(i) d(x, ϕ(x, t)) ≤ C|t| for some positive C and all x ∈M , t ∈ R.
(ii) There is a real number p ≥ 0 such that for all x ∈ M and t ∈ R, ϕ(x, t) = x

iff t ∈ pZ.

Proposition 3.2. Let (M,d) be a compact metric space with a uniform flow ϕ.
Then every nonempty closed subset of M is the fixed point set of an orbit-preserving
autohomeomorphism of M . In particular, M has CIPH.
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Proof. In the case where p > 0 it suffices to consider p = 1. The formulation
here is a matter of technical convenience for later proofs. If 3.1(ii) is satisfied with
p > 0, define a new metric D and a new flow ψ by D(x, y) = (pC)−1d(x, y) and
ψ(x, t) = ϕ(x, pt). Then

D(x, ψ(x, t)) = (pC)−1d(x, ϕ(x, pt)) ≤ (pC)−1 · C|pt| = |t|
and ψ satisfies 3.1(ii). When p = 1 there is a free circle action on M and the
proposition follows from [13, 2.3].

Now suppose we have the case corresponding to p = 0 and A is a nonempty closed
subset of M . Let r(x) = 1

2C d(x,A) for x ∈ M and define a mapping h : M → M
by h(x) = ϕ(x, r(x)) for x ∈M . Clearly, fix(h) = A.

To see that h is one-to-one, suppose that h(x) = h(y). Then x and y must lie in
the same orbit and, for some real number t, y = ϕ(x, t). Then

ϕ(x, r(x)) = ϕ(ϕ(x, t), r(y)) = ϕ(x, t+ r(y)).

Thus t = r(x) − r(y). The triangle inequality applied to x, y, A implies

d(x, y) ≥ |d(x,A) − d(y,A)|.
Since C|t| ≥ d(x, y), we have C|t| ≥ 2C|r(x) − r(y)|. Therefore t = 0 and r(x) =
r(y). Then we have

ϕ(ϕ(x, r(x)),−r(x)) = ϕ(ϕ(y, r(y)),−r(y)).
Consequently, x = ϕ(x, 0) = ϕ(y, 0) = y, and h is one-to-one.

To complete the proof that M has CIPH, it suffices to show that h is onto. To
see this, let y ∈ M . For some b ∈ R, the metric d is bounded by b. Let x denote
the unique point in the orbit ϕ({y}×R) such that ϕ(x, b) = y and let [x, y] denote
the arc in ϕ({y} ×R) with endpoints x and y. Since h|[x, y] is an order-preserving
homeomorphism from [x, y] onto h([x, y]) such that h(x) < y, and h(y) ≥ y, it
follows that y ∈ h([x, y]). Consequently, h is onto as required.

Lemma 3.3. If (Xj , dj), j = 1, 2, are metric spaces and ϕ is a uniform flow on
(X2, d2), then X = X1 ×X2 is a metric space with respect to the metric D defined
by

D((x1, x2), (x
′
1, x

′
2)) = max{d1(x1, x

′
1), d2(x2, x

′
2)},

and the flow Φ on X given by Φ((x1, x2), t) = (x1, ϕ(x2, t)) is uniform on (X,D).

Proof. Note that

D((x1, x2),Φ((x1, x2), t) = D((x1, x2), (x1, ϕ(x2, t)) = d2(x2, ϕ(x2, t)).

Condition 3.1(i) follows readily, and 3.1(ii) is straightforward.

Proposition 3.4. If (M,d) is a compact metric space with a uniform flow and X
is a metrizable space, then M ×X has CIPH.

Proof. By Lemma 3.3 there is a metric ρ for M ×X and a flow ϕ which is uniform
on (M×X, ρ). The proof of Proposition 3.2 can be applied to M×X . Since M×X
need not be compact, the one adjustment required is to use the compactness of M
to show that the mapping h is a closed mapping and hence an autohomeomorphism
of M ×X .
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Recall that each compact metrizable group and each abelian metrizable group
G has a metric d satisfying d(gxh, gyh) = d(x, y). Such metrics will be called
invariant. They are completely characterized by the function g 7→ ||g|| : G → R
defined by ||g|| = d(1, g), from which d is recoverable by d(g, h) = ||g−1h||. The
function || · || satisfies ||x−1|| = ||x||, ||gh|| ≤ ||g|| + ||h||, ||hgh−1|| = ||h|| and
||g|| = 0 iff g = 1. We call a function || · || an invariant norm on G and remember
that the invariant norms are in bijective correspondence with the invariant metrics
on a group. (See e.g. [4, Chap. IX, p. TG IX.24] where this is discussed for abelian
groups; the arguments work for invariant metrics quite generally.)

Lemma 3.5. Assume that G is a group with an invariant norm || · || and there
is a one-parameter subgroup α : R → G such that ||α(t)|| ≤ C|t| for some positive
number C. Suppose that N is a closed normal subgroup of G not containing α(R).
Then there is a metric D on G/N such that the flow (Ng, t) 7→ Ngα(t) is uniform
on (G/N,D).

Proof. We define ||Ng||N = inf{||ng|| : n ∈ N}. Then || · ||N is an invariant norm
on G/N . The topology defined by the metric D associated with this norm is the
quotient topology.

We must verify (i) and (ii) of Definition 3.1 for the flow ϕ on G/N defined by
ϕ(Ng, t) = Ngα(t). Regarding (i), we compute

D(Ng, ϕ(Ng, t)) = D(Ng,Ngα(t)) = ||Nα(t)||N
= inf{||nα(t)|| : n ∈ N} ≤ ||α(t)|| ≤ C(t)

by hypothesis on α. Thus 3.1(i) is satisfied.
Regarding (ii), we note that ϕ(Ng, t) = Ng means gNα(t) = Ngα(t) = Ng =

gN , i.e., α(t) ∈ N . Since α(R) is not contained in N , the inverse image α−1(N) is
a closed proper subgroup of R and thus is of the form pZ with a nonnegative p ∈ R.
If p = 0, then ϕ(Ng, t) = Hg holds iff t = 0. If p is positive, then ϕ(Ng, t) = Hg
holds iff t ∈ pZ. Thus 3.1(ii) holds, and the proof is complete.

Proposition 3.6. The Cantor set and the space of irrationals have CIPH.

Proof. Note that the space of irrationals is homeomorphic to Zω ([1]) and the
Cantor set is homeomorphic to Dω, where D denotes the two-point discrete group
([5]). We shall only deal here with the Cantor set.

Fix a metric d for Dω and let A be a nonempty closed subset of Dω. Then the
complement Dω − A, as an open subspace of Dω, can be written as a countable
(finite or infinite) disjoint union C1 ∪ C2 ∪ . . . of closed and open subspaces of Dω

each of which is homeomorphic to Dω . Since translation by a nonzero element in
an abelian group determines an autohomeomorphism of the group, it follows that
there is a sequence of fixed point free autohomeomorphisms h1, h2, . . . of C1, C2, . . .
respectively. Moreover, we can choose each hi so that d(hi(x), x) <

1
i for x ∈ Ci.

It only remains to observe that the function h : Dω → Dω defined by

h(x) =

{
x if x ∈ A,
hi(x) if x ∈ Ci,

is an autohomeomorphism of Dω with fix(h) = A.

Lemma 3.7. Every compact metrizable totally disconnected infinite group is home-
omorphic to the Cantor set and hence has CIPH.
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Proof. The proof follows from [5] and Proposition 3.6.

Theorem 3.8. In every infinite compact metrizable group G each nonempty closed
subset is the fixed point set of some autohomeomorphism. If G is not totally discon-
nected, then G admits a metric d and a uniform flow on (G, d) defined by the ac-
tion of some one-parameter group of G on the right. In particular, every nonempty
closed subset of G is the fixed point set of an orbit-preserving autohomeomorphism
of G.

Proof. By Mostert’s Cross Section Theorem [11, 1.14], every compact group G
possesses a zero-dimensional compact subset Z homeomorphic to G/G0 such that
(z, g) 7−→ zg : Z × G0 → G is a homeomorphism. Since G is infinite, at least one
of G/G0 or G0 is infinite. If G0 is not degenerate, in view of Lemma 3.3 it suffices
to prove the theorem for G0. If G0 is singleton, then G is totally disconnected and
the assertion follows from Lemma 3.7.

Thus the proof will be completed if we establish the claim for G connected, which
we shall assume for the remainder of the proof. Since every compact group is the
projective limit of Lie groups, there is a closed normal subgroup M such that G/M
is a Lie group. (See e.g. [3, Chap. IX, p. LIE IX.99, Corollaire 1].) The identity
component K of M is a compact connected normal subgroup of G. There exists a
compact connected normal subgroup H of G such that K ∩H is zero-dimensional
and central (see e.g. [11, p. 299, 2.5]). Since H/(K ∩H) ∼= G/M , the group H is
finite-dimensional. The map q : K×H → G, q(k, h) = kh is a surjective continuous
morphism. Thus G ∼= (K ×H)/N with N = ker q. In view of Lemma 3.5 it suffices
to prove the required data on K × H . Then by Lemma 3.3 it suffices again to
prove the claim for H . Thus we may assume now that G is compact connected and
finite-dimensional. Now G is the semidirect product G′ × A of the closed normal
commutator subgroup G′ and an abelian subgroup A isomorphic to G/G′ (see [10]).
Since G′ is finite-dimensional and semisimple, it is a Lie group. By Lemma 3.3 it
suffices to prove the assertion for each of the two factors separately.

Case 1. G is a semisimple Lie group. We claim that the theorem holds for every
compact connected Lie group G. Every such G contains a maximal torus (see [3,
p. LIE IX.8]) and has an invariant Riemannian metric d which induces on T an
invariant Riemannian metric and thus induces on each circle group in T an invariant
Riemannian metric. However, an invariant Riemannian metric on R/Z is a positive
multiple of the metric given by d(s+Z, t+Z) = |s−t|. Thus we find a one-parameter
subgroup α : R → G such that ||α(t)|| ≤ C|t| with the invariant norm associated
with d. Then Lemma 3.5 yields a proof of the assertion in this case with N = {1}.
Case 2. G is a finite-dimensional abelian group. Then G = T × A with a unique
maximal torus and a torus free factor, by Theorem 2.13(iv). By Lemma 3.3 the
proof will be accomplished if it can be done for each of the factors separately. In
the proof of Case 1 we took care of the case of a Lie group. Thus there remains
only the case that G is a torus free compact connected abelian group.

Now let β : R → G denote any nondegenerate one-parameter subgroup. One
exists since G is assumed to be nondegenerate. Since G is torus free, we have

β(t) = 0 iff t = 0.(3.1)

In particular, β(1) 6= 0. The characters of G separate the points; hence there is
a character χ : G → T = R/Z such that χ(β(1)) 6= 0. The morphism χ ◦ β : R →
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R/Z lifts to a morphism λ : R → R such that χ ◦ β = p ◦ λ with the quotient
(covering) morphism p : R → R/Z. (This is elementary; it also follows from a
topological fact since R is simply connected and p is a covering map.) Every
continuous endomorphism λ of R is of the form λ(t) = rt for some r ∈ R. Since
p(r) = χ ◦ β(1) 6= 0, we certainly have r 6= 0. We then have χ(β(t)) = rt + Z, and
define α : R → G by α(t) = β( t

r ). Then (3.1) implies

α(t) = 0 iff t = 0(3.2)

and we have

χ ◦ α = p : R → T.(3.3)

Now we set K = kerχ and define

Ψ: K × R → G, Ψ(k, t) = k + α(t).(3.4)

Claim: Ψ is surjective. For a proof let g ∈ G. Pick t ∈ R such that χ(g) = t+ Z
and set k = g − α(t). Then χ(g − α(t)) = χ(g) − χ(α(t)) = χ(g) − (t + Z) = 0 in
view of (3.3). Hence k ∈ K and thus g = k+α(t) = Ψ(k, t). This proves the claim.

Now Lemma 3.5 shows that it is sufficient to prove the claim for K × R. Then
by Lemma 3.3 it suffices to prove the claim for R which is obvious.

Corollary 3.9. If G is a positive-dimensional compact metrizable group and X is
a metrizable space, then G×X has CIPH.

Proof. The proof is immediate by Theorem 3.8 and Proposition 3.4.

Corollary 3.10. A compact metrizable group has CIPH iff it is either degenerate
or infinite.

Proof. An autohomeomorphism of a nondegenerate finite discrete group cannot fix
all points but one.

Corollary 3.11. Every compact metrizable group has CIP.

Proof. Every nonempty subset of a finite discrete group is the fixed point set of a
retraction.

4. Some Consequences and Ramifications

In [14, p. 134] a space Y is defined to have property W (strong) if it admits a
homotopy H : Y × [0, 1] → Y such that H(y, t) = y iff t = 0. We note that a metric
space has property W (strong) if it admits a uniform flow, since then we can set

H(x, t) = ϕ(x, t) (or ϕ
(
x, t

2p

)
for p > 0). It is shown in [16, 3.14] that if M is a

connected metrizable space with property W (strong) and X is a zero-dimensional
compact (Hausdorff) space, then M ×X ×X has CIP iff X is metrizable. In the
next result we use these facts and the concept of CIPH to give a characterization
of the compact zero-dimensional spaces which are metrizable.

Proposition 4.1. If (M,d) is a compact connected metric space admitting a uni-
form flow and X is a compact zero-dimensional space, then M ×X ×X has CIPH
iff X is metrizable.
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Proof. Sufficiency. If X is metrizable, then X ×X is metrizable and M ×X ×X
has CIPH by Proposition 3.4.

Necessity. Since a space having CIPH has CIP, the necessity follows from the
remarks preceding the proposition.

We note that ifX is a nondegenerate compact zero-dimensional metrizable space,
then Xλ × Xλ is metrizable iff Xλ is metrizable iff λ is a countable cardinal.
Moreover, when λ is uncountable we have Xλ ×Xλ = Xλ. Consequently, we can
apply Proposition 4.1 to obtain the following result.

Corollary 4.2. If (M,d) is a compact connected metric space admitting a uniform
flow and X is a nondegenerate compact zero-dimensional metrizable space, then
M ×Xλ has CIPH iff λ is a countable cardinal.

We note that if a Hausdorff space D × M has CIPH, where D is a totally
disconnected space and M is a connected space, then M has CIPH since, given a
nonempty closed subset A of M , an autohomeomorphism h of D×M with fix(h) =
D × A must preserve components and thereby determine an autohomeomorphism
of M whose fixed point set is A. Since an n-manifold having a compact boundary
component with a nonzero Euler characteristic does not have CIPH ([13, 3.1]), it
follows that Dω × Iλ, I = [0, 1], does not have CIPH if λ is an odd integer. If G is
a compact metrizable group which is not totally disconnected, then Corollary 3.9
shows that G×Iλ has CIPH if λ is a countable cardinal. However, no nonmetrizable
ANR-compactum has CIP ([6, 3.4]). Since a compact Lie group is an ANR-space,
its product with a Tychonov cube is a nonmetrizable ANR-compactum and we
obtain the following result.

Proposition 4.3. If G is a compact Lie group, then G × Iλ has CIPH iff λ is a
countable cardinal.

Remark 4.4. We note that Corollary 4.2 and Proposition 4.3 provide examples
which contrast the metrizable and nonmetrizable cases regarding CIPH. In what
follows, let λ be an uncountable cardinal.

1. Let G be a compact Lie group and consider the Hilbert cube Q = Iω. By
Proposition 4.3, G× Iλ = G×Qλ does not have CIPH. However, since G has
CIPH by Theorem 3.8 and Q has CIPH by [13, 12.4], G × Qλ is a product
of homogeneous spaces each of which has CIPH. This is in contrast to the
metric case, where it is not known if every homogeneous locally contractible
space has CIPH.

2. Let G be a compact connected metrizable group and let C = Dω. Then
G×Dλ = G×Cλ does not have CIPH by Theorem 3.8 and Corollary 4.2. By
Theorem 3.8, G×Cλ is a product of compact groups each of which has CIPH.
This is in contrast to the metric case since, by Corollary 3.10, a metrizable
product of compact groups has CIPH iff it is either degenerate or infinite.

We remark also that the hypothesis of compactness in Proposition 3.2 can be
relaxed so that the conclusion of the proposition is valid for free R-actions. However,
one cannot conclude that connected metrizable groups must have CIP, since there
exists a connected subgroup of the plane R2 which fails to have CIP [16, 2.2].

Finally, we end this section by noting that any metrizable space M admitting
a flow satisfying condition (ii) of Definition 3.1 admits distinct flow structures
corresponding to the closed subsets of M .
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Proposition 4.5. Let M be a metrizable space admitting a flow satisfying condi-
tion (ii) of Definition 3.1. If A is a closed subset of M , then there is a flow on M
whose invariant set is A.

Proof. In [2] it is shown that every closed subset of a metrizable space X is the
invariant set of a flow on X iff X admits a flow having an empty invariant set. The
proof follows, since a flow ϕ on M satisfying condition (ii) of Definition 3.1 has no
invariant points.

By Lemma 3.3 a product of two metrizable spaces will admit a uniform flow if
one of the factor spaces does. Thus we obtain the following result.

Corollary 4.6. Let M be a metrizable space and let G be a compact metrizable
positive-dimensional group. Then every closed subset of G×M is the invariant set
of some flow on G×M .
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