Nonexistence and uniqueness of positive solutions of Yamabe type equations on nonpositively curved manifolds
HTML articles powered by AMS MathViewer
- by Bruno Bianchini and Marco Rigoli
- Trans. Amer. Math. Soc. 349 (1997), 4753-4774
- DOI: https://doi.org/10.1090/S0002-9947-97-01810-2
- PDF | Request permission
Abstract:
We prove nonexistence and uniqueness of positive $C^{2}$–solutions of the elliptic equation $\Delta u +a(x)u - K(x)u^{\sigma }=0$, $\sigma >1$, on a nonpositively curved, complete manifold $(M,g)$ .References
- Tilak Bhattacharya, A nonexistence result for the $n$-Laplacian, Pacific J. Math. 160 (1993), no. 1, 19–26. MR 1227500, DOI 10.2140/pjm.1993.160.19
- Kuo-Shung Cheng and Jenn-Tsann Lin, On the elliptic equations $\Delta u=K(x)u^\sigma$ and $\Delta u=K(x)e^{2u}$, Trans. Amer. Math. Soc. 304 (1987), no. 2, 639–668. MR 911088, DOI 10.1090/S0002-9947-1987-0911088-1
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR 521983, DOI 10.1007/BFb0063413
- Fang-Hua Lin, On the elliptic equation $D_i[a_{ij}(x)D_jU]-k(x)U+K(x)U^p=0$, Proc. Amer. Math. Soc. 95 (1985), no. 2, 219–226. MR 801327, DOI 10.1090/S0002-9939-1985-0801327-3
- Jerry L. Kazdan and F. W. Warner, Curvature functions for open $2$-manifolds, Ann. of Math. (2) 99 (1974), 203–219. MR 343206, DOI 10.2307/1970898
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493–529. MR 662915, DOI 10.1512/iumj.1982.31.31040
- Manabu Naito, A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984), no. 1, 211–214. MR 750398
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- Andrea Ratto, Marco Rigoli, and Alberto G. Setti, On the Omori-Yau maximum principle and its applications to differential equations and geometry, J. Funct. Anal. 134 (1995), no. 2, 486–510. MR 1363809, DOI 10.1006/jfan.1995.1154
- —, A uniqueness result in PDE’s and parallel mean curvature immersions in Euclidean space, Complex Variables 30 (1996), 221–233.
- Andrea Ratto, Marco Rigoli, and Laurent Véron, Courbure scalaire et déformations conformes des variétés riemanniennes non compactes, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 7, 665–670 (French, with English and French summaries). MR 1272323
- Andrea Ratto, Marco Rigoli, and Laurent Véron, Scalar curvature and conformal deformation of hyperbolic space, J. Funct. Anal. 121 (1994), no. 1, 15–77. MR 1270588, DOI 10.1006/jfan.1994.1044
Bibliographic Information
- Bruno Bianchini
- Affiliation: B.B. e M.R. Dipartimento di Matematica, Universitá di Milano, Via Saldini, 50, 20133, Milano, Italy
- Marco Rigoli
- Affiliation: B.B. e M.R. Dipartimento di Matematica, Universitá di Milano, Via Saldini, 50, 20133, Milano, Italy
- MR Author ID: 148315
- Email: rigoli@vmimat.mat.unimi.it
- Received by editor(s): March 6, 1995
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 4753-4774
- MSC (1991): Primary 53C21, 58G03
- DOI: https://doi.org/10.1090/S0002-9947-97-01810-2
- MathSciNet review: 1401514