The Jacobson radical of group rings of locally finite groups
HTML articles powered by AMS MathViewer
- by D. S. Passman
- Trans. Amer. Math. Soc. 349 (1997), 4693-4751
- DOI: https://doi.org/10.1090/S0002-9947-97-01855-2
- PDF | Request permission
Abstract:
This paper is the final installment in a series of articles, started in 1974, which study the semiprimitivity problem for group algebras $K[G]$ of locally finite groups. Here we achieve our goal of describing the Jacobson radical ${\mathcal {J}}K[{G}]$ in terms of the radicals ${\mathcal {J}}K[{A}]$ of the group algebras of the locally subnormal subgroups $A$ of $G$. More precisely, we show that if $\operatorname {char} K=p>0$ and if $\mathbb {O}_{p}(G)=1$, then the controller of ${\mathcal {J}}K[{G}]$ is the characteristic subgroup $\mathbb {S}^{p}(G)$ generated by the locally subnormal subgroups $A$ of $G$ with $A=\mathbb {O}^{p’}(A)$. In particular, we verify a conjecture proposed some twenty years ago and, in so doing, we essentially solve one half of the group ring semiprimitivity problem for arbitrary groups. The remaining half is the more difficult case of finitely generated groups. This article is effectively divided into two parts. The first part, namely the material in Sections 2–6, covers the group theoretic aspects of the proof and may be of independent interest. The second part, namely the work in Sections 7–12, contains the group ring and ring theoretic arguments and proves the main result. As usual, it is necessary for us to work in the more general context of twisted group algebras and crossed products. Furthermore, the proof ultimately depends upon results which use the Classification of the Finite Simple Groups.References
- S. A. Amitsur, On the semi-simplicity of group algebras, Michigan Math. J. 6 (1959), 251–253. MR 108540, DOI 10.1307/mmj/1028998230
- V. V. Belyaev, Locally finite Chevalley groups, Studies in group theory, Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 1984, pp. 39–50, 150 (Russian). MR 818993
- A. V. Borovik, Periodic linear groups of odd characteristic, Dokl. Akad. Nauk SSSR 266 (1982), no. 6, 1289–1291 (Russian). MR 681626
- Z. Z. Dyment and A. E. Zalesskiĭ, The lower radical of a group ring, Dokl. Akad. Nauk BSSR 19 (1975), no. 10, 876–879, 955 (Russian). MR 0384852
- Joe W. Fisher and Susan Montgomery, Semiprime skew group rings, J. Algebra 52 (1978), no. 1, 241–247. MR 480616, DOI 10.1016/0021-8693(78)90272-7
- J. I. Hall, Locally finite simple groups of finitary linear transformations, Finite and locally finite groups (Istanbul, 1994) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 147–188. MR 1362809, DOI 10.1007/978-94-011-0329-9_{6}
- —, Periodic simple groups of finitary linear transformations (to appear).
- B. Hartley and G. Shute, Monomorphisms and direct limits of finite groups of Lie type, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 137, 49–71. MR 734665, DOI 10.1093/qmath/35.1.49
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- Otto H. Kegel and Bertram A. F. Wehrfritz, Locally finite groups, North-Holland Mathematical Library, Vol. 3, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0470081
- U. Meierfrankenfeld, Non-finitary locally finite simple groups, Finite and locally finite groups (Istanbul, 1994) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 189–212. MR 1362810, DOI 10.1007/978-94-011-0329-9_{7}
- Susan Montgomery, Outer automorphisms of semi-prime rings, J. London Math. Soc. (2) 18 (1978), no. 2, 209–220. MR 509936, DOI 10.1112/jlms/s2-18.2.209
- D. S. Passman, Radicals of twisted group rings, Proc. London Math. Soc. (3) 20 (1970), 409–437. MR 271246, DOI 10.1112/plms/s3-20.3.409
- D. S. Passman, A new radical for group rings?, J. Algebra 28 (1974), 556–572. MR 427363, DOI 10.1016/0021-8693(74)90060-X
- D. S. Passman, Subnormality in locally finite groups, Proc. London Math. Soc. (3) 28 (1974), 631–653. MR 360848, DOI 10.1112/plms/s3-28.4.631
- D. S. Passman, Radical ideals in group rings of locally finite groups, J. Algebra 33 (1975), 472–497. MR 389964, DOI 10.1016/0021-8693(75)90114-3
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81, DOI 10.1215/S0012-7094-39-00549-1
- Donald S. Passman, Infinite crossed products, Pure and Applied Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR 979094
- D. S. Passman, Semiprimitivity of group algebras of locally finite groups, Infinite groups and group rings (Tuscaloosa, AL, 1992) Ser. Algebra, vol. 1, World Sci. Publ., River Edge, NJ, 1993, pp. 77–101. MR 1377959
- D. S. Passman, Semiprimitivity of group algebras of infinite simple groups of Lie type, Proc. Amer. Math. Soc. 121 (1994), no. 2, 399–403. MR 1184083, DOI 10.1090/S0002-9939-1994-1184083-7
- D. S. Passman, Semiprimitivity of group algebras of locally finite groups. II, J. Pure Appl. Algebra 107 (1996), no. 2-3, 271–302. Contact Franco-Belge en Algèbre (Diepenbeek, 1993). MR 1383178, DOI 10.1016/0022-4049(95)00069-0
- —, Semiprimitivity of group algebras: a survey, Atas da XII Escola de Álgebra, IMECC-UNICAMP, 1995, pp. 168–187.
- —, The semiprimitivity problem for group algebras of locally finite groups, Israel J. Math. 96 (1996), 481–509.
- —, The semiprimitivity problem for twisted group algebras of locally finite groups, Proc. London Math. Soc. (3) 73 (1996), 323–357.
- D. S. Passman and A. E. Zalesskiĭ, Semiprimitivity of group algebras of locally finite simple groups, Proc. London Math. Soc. (3) 67 (1993), no. 2, 243–276. MR 1226602, DOI 10.1112/plms/s3-67.2.243
- R. E. Phillips, Finitary linear groups: a survey, Finite and locally finite groups (Istanbul, 1994) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 111–146. MR 1362808
- —, Primitive, locally finite, finitary linear groups, J. Algebra (to appear).
- W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0167513
- Simon Thomas, An identification theorem for the locally finite nontwisted Chevalley groups, Arch. Math. (Basel) 40 (1983), no. 1, 21–31. MR 720890, DOI 10.1007/BF01192748
- Orlando E. Villamayor, On the semisimplicity of group algebras, Proc. Amer. Math. Soc. 9 (1958), 621–627. MR 98769, DOI 10.1090/S0002-9939-1958-0098769-7
- H. Wielandt, Eine Verallgemeinerung der invarianten Untergruppen, Math. Z. 45 (1939), 209–244.
- —, Unendliche Permutationsgruppen, Lecture Notes, Math. Inst. Univ. Tübingen, 1960.
- Helmut Wielandt, Mathematische Werke/Mathematical works. Vol. 1, Walter de Gruyter & Co., Berlin, 1994. Group theory; With essays on some of Wielandt’s works by G. Betsch, B. Hartley, I. M. Isaacs, O. H. Kegel and P. M. Neumann; Edited and with a preface by Bertram Huppert and Hans Schneider. MR 1272467
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
Bibliographic Information
- D. S. Passman
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 136635
- Email: passman@math.wisc.edu
- Received by editor(s): May 23, 1996
- Additional Notes: Research supported by NSF Grant DMS-9224662.
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 4693-4751
- MSC (1991): Primary 16S34; Secondary 16S35, 20F50, 20F24
- DOI: https://doi.org/10.1090/S0002-9947-97-01855-2
- MathSciNet review: 1401781