On the rational homotopy type of function spaces
HTML articles powered by AMS MathViewer
- by Edgar H. Brown Jr. and Robert H. Szczarba
- Trans. Amer. Math. Soc. 349 (1997), 4931-4951
- DOI: https://doi.org/10.1090/S0002-9947-97-01871-0
- PDF | Request permission
Abstract:
The main result of this paper is the construction of a minimal model for the function space $\mathcal {F}(X,Y)$ of continuous functions from a finite type, finite dimensional space $X$ to a finite type, nilpotent space $Y$ in terms of minimal models for $X$ and $Y$. For the component containing the constant map, $\pi _{*}(\mathcal {F}(X,Y))\otimes Q =\pi _{*}(Y)\otimes H^{-*}(X;Q)$ in positive dimensions. When $X$ is formal, there is a simple formula for the differential of the minimal model in terms of the differential of the minimal model for $Y$ and the coproduct of $H_{*}(X;Q)$. We also give a version of the main result for the space of cross sections of a fibration.References
- A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
- A. K. Bousfield, C. Peterson, and L. Smith, The rational homology of function spaces, Arch. Math. (Basel) 52 (1989), no. 3, 275–283. MR 989883, DOI 10.1007/BF01194391
- Edgar H. Brown Jr. and Robert H. Szczarba, Continuous cohomology and real homotopy type, Trans. Amer. Math. Soc. 311 (1989), no. 1, 57–106. MR 929667, DOI 10.1090/S0002-9947-1989-0929667-6
- André Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), no. 2, 609–620. MR 667163, DOI 10.1090/S0002-9947-1982-0667163-8
- Peter Hilton, Guido Mislin, and Joe Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies, No. 15, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0478146
- J. Lannes, Sur la cohomologie modulo $p$ des $p$-groupes abéliens élémentaires, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 97–116 (French). MR 932261
- J. Peter May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original. MR 1206474
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Micheline Vigué-Poirrier and Dennis Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976), no. 4, 633–644. MR 455028
- Micheline Vigué-Poirrier, Cohomologie de l’espace des sections d’un fibré et cohomologie de Gelfand-Fuchs d’une variété, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 371–396 (French). MR 846460, DOI 10.1007/BFb0075471
- Micheline Vigué-Poirrier, Sur l’homotopie rationnelle des espaces fonctionnels, Manuscripta Math. 56 (1986), no. 2, 177–191 (French, with English summary). MR 850369, DOI 10.1007/BF01172155
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
Bibliographic Information
- Edgar H. Brown Jr.
- Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254
- Robert H. Szczarba
- Affiliation: Department of Mathematics, Yale University, Box 208283, New Haven, Connecticut 06520
- Received by editor(s): February 12, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 4931-4951
- MSC (1991): Primary 55P15, 55P62
- DOI: https://doi.org/10.1090/S0002-9947-97-01871-0
- MathSciNet review: 1407482